CONCEPT: BREAKDOWN AND UTILIZATION OF SUGAR

Metabolism Review

- **Metabolism** is the of all chemical reactions in a cell
 - □ **Catabolism** includes all reactions that breakdown macromolecules
 - Energetically favorable, because energy is released from the bonds
 - □ **Anabolism** includes all reactions that synthesize and form macromolecules
 - Energetically unfavorable, because energy is needed to form the bonds
 - □ **Metabolic pathways** are series of reactions where the end product of one is the substrate for the next
 - Metabolites (metabolic intermediates) are compounds formed in the process of creating an end product

EXAMPLE: Catabolism vs. Anabolism

Importance of Glucose

- To survive, cells must get ______ from fuel molecules (ex: food)
 - □ **Cell respiration** is the process of harvesting useful energy from bonds in sugar molecules
 - The monosaccharide *glucose* is the most important sugar for respiration
 - ΔG = -686 kcal/mol
 - □ Breakdown of sugars (energetically favorable) is coupled with the creation of ATP (energetically unfavorable)
 - Process has to be controlled so the energy can be harvested by activated carriers

EXAMPLE: Cell respiration coupled to ATP synthesis

Glucose +
$$6 \text{ O}_2$$
 Respiration 6 CO_2 + $6 \text{ H}_2\text{O}$

$$ADP + P_1 \qquad ATP$$

Stages of Catabolism

- Catabolism of food occurs in three stages
 - Digestion: Breakdown of larger molecules into small monomeric ______
 - Can occur outside cells (intestine) or inside cells (lysosomes)
 - 2. Glycolysis: Breakdown of glucose or other sugar monomers into *pyruvate*
 - Occurs in the cytosol
 - Generates ATP, NADH, and pyruvate is turned into CO₂ and acetyl CoA (an activated carrier)
 - 3. Oxidative phosphorylation: Metabolic pathway that leads to the production of _____
 - Occurs in the mitochondria
 - Creates CO₂, NADH, ATP, and citrate (for the citric acid cycle), while consuming O₂

EXAMPLE: Complexity of different metabolic pathways composing cellular respiration

Oxygen and Respiration

- The presence of ______ dictates which metabolic pathway the cell undertakes to breakdown fuel for energy
 - ☐ Two types of respiration are dependent on oxygen availability: *Anaerobic* (no oxygen) or *Aerobic* (with oxygen)
 - Aerobic respiration has higher energy yields than anaerobic respiration
 - □ Organisms are named based on their requirement for oxygen during metabolism
 - **Obligate aerobes**: Have an absolute requirement for oxygen (Humans)
 - **Obligate anaerobes**: Cannot use oxygen, and oxygen can actually be toxic for them (some bacteria)
 - **Facultative organisms**: Can function using either, and can switch between the two forms (some bacteria)

EXAMPLE: Choice of metabolic pathway is dependent on presence of Oxygen

PRACTICE

- 1. Which of the following definitions defines anabolism?
 - a. All reactions that breakdown molecules
 - b. All reactions that synthesize molecules
 - c. A metabolic pathway that leads to the production of energy
 - d. Process of harvesting useful energy from bonds in sugar molecules

- 2. Which of the following pathways causes the breakdown of glucose into pyruvate?
 - a. Glycolysis
 - b. Oxidative Phosphorylation
 - c. Citric Acid Cycle
 - d. Krebs Cycle

- 3. Oxygen is not required for metabolism in which type of organism?
 a. Obligate aerobes
 b. Obligate anaerobes
 c. Facultative organisms