CONCEPT: THE EPIGENETIC CODE

Chromatin Structure

- Chromatin exists in two states: Euchromatin and Heterochromatin
 - □ **Euchromatin** is a less ______ DNA structure
 - Allows for the packaged DNA to be accessible to other proteins
 - □ **Heterochromatin** is a more condensed DNA structure
 - Genes present in heterochromatin areas are not expressed, therefore it contains few genes
 - Found mainly in centromeres and telomeres
 - ☐ The **zone of inactivation** describes restriction of gene expression of genes placed near heterochromatin
 - Due to **position effects**, the activity of a gene depends on relative location to heterochromatin

EXAMPLE: Structure of euchromatin and heterochromatin

Histone Protein Modifications

- Histone proteins control the packaging and condensation of the DNA
 - □ Each histone protein contains an N-terminal _____
 - Amino acids on this tail can be covalently modified to effect condensation of the DNA
 - □ **Acetylation** (C₂H₃O) and **Methylation** (CH₃) are the two most common modifications

- Acetylation removes the _____ charge from the histone and loosens chromatin structure
- Methylation tightens chromatin structure and prevents acetylation
- □ Occasionally a chain reaction can initiation a long linear chain of similar histone modifications
 - Eventually stopped by barrier sequences which separate condensed and noncondensed chromatin

EXAMPLE: Histone modifications in a nucleosome core

Reading the Epigenetic Code

- Reading the epigenetic code (histone modification code) is an extremely difficult process
 - □ Each nucleosome has a different ______ of modification, which is carefully controlled
 - Once modified, they can attract other proteins
 - These modifications are constantly changing to adapt to the cells needs
 - □ Chromatin remodeling complexes use ATP energy to change the position of DNA on a nucleosome
 - Allow for specific sequences to become more or less condensed

EXAMPLE: Histone remolding allows for gene access

 Epigenetic inheritance is the process of inheriting chromatin structure 	
□ Histone modifications are passed to daughter cells	
- Amino acids on this tail can be covalently modified to effect condensation of the DNA	ı
□ This inheritance allows for cell memory which is	_ inheritance
PRACTICE:	
Which of the following terms is associated with condensed chromatin? a. Acetylation b. Euchromatin	

c. Heterochromatind. Cell memory

- 4. True or False: Histone protein modifications can be inherited. a. True

 - b. False