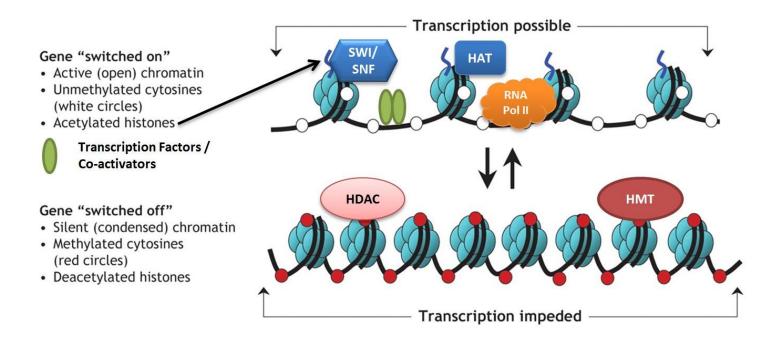
CONCEPT: EPIGENETIC REGULATION OF GENE EXPRESSION

Epigenetic modifications

- Epigenetic modifications include heritable changes to the chromatin structure which alters gene expression.
 - Including: histone modification, DNA methylation, DNA acetylation
 - Histone Modification:
 - ☐ **Histone methylation** is the addition of a methyl group to certain amino acids on the histone protein
 - Represses gene expression by stimulating chromatin condensation
 - Catalyzed by histone methyltransferase (HMT) and removed by histone demethylase
 - ☐ **Histone acetylation** is the addition of an acetyl group to certain amino acids on the histone proteins
 - Found in transcriptionally active chromatin because it stimulates an open chromatin structure
 - Catalyzed by histone acetyltransferase (HAT) and removed by histone deacetylase (HDAC)
 - □ The **histone code** is the combination of methylation and acetylation events that alter chromatin structure and regulate gene expression
 - Recruit other regulatory proteins to the gene
- CpG (CG) islands are cytosine and guanine nucleotides that can be methylated or unmethylated
 - Commonly found in promoter regions ~ high CG content ~1000-2000 nucleotides long
 - Methylated CpG island= silenced gene
 - Unmethylated CpG island= expressed gene

EXAMPLE: CpG islands

Non-methylated CpG islands= yellow


Certain proteins can act as

genetic activators

or repressors

- ☐ Gene **activator** or **repressor proteins** can modify local chromatin structure to change gene expression
 - Nucleosome remodeling factors (NURF) are proteins that alter the arrangement of nucleosomes
 - Do not effect methylation or acetylation
 - Act by moving the histone protein octamer to a different DNA location
 - **Transcription Elongation factors**: enzymes that remodel nucleosomes for transcription
 - These proteins typically reside on the RNA polymerase tail, so that they can act during transcription
- □ Activator proteins work *synergistically*
 - **Transcriptional synergy** is when several activator proteins increase the rate of transcription
 - Occurs when the new rate is higher than the rate sums of each activator working alone

EXAMPLE: Activated and condensed chromatin

Luong, P. Basic Principles of Genetics (2009)

Epigenetic Heredity

- Cells **terminally differentiate**, meaning that after differentiation, the daughter cells remain that cell type
 - □ **Cell memory** is the property that allows cells to pass patterns of gene expression to their daughter cells
 - This is heredity that doesn't include the DNA sequence but instead the chromatin modifications

- □ **Epigenetic inheritance** is the property that allows organisms to pass patterns of gene expression to offspring
 - This is heredity that doesn't include the DNA sequence but instead the chromatin modifications
 - **Genomic imprinting** is when one parental gene copy remains active, while the other remains inactive
 - Inactive copies remain methylated depending on source (sperm or egg)
 - Two identical DNA sequences, but different chromatin modifications which effect expression

EXAMPLE: Altered methylation status of one gene (A^{vy} gene) causes different phenotypes in genetically identical mice

- Chromosome wide chromatin structures can also be inherited by cellular offspring
 - □ **X-inactivation** is the transcriptional inactivation of an entire X chromosome
 - □ X-inactivation initiation is random, meaning that both X copies have the same chance of being inactivated
 - Once one has been chosen it remains inactive for all cellular division
 - □ X-inactivation initiation occurs after a few several thousand cells have formed
 - Therefore a **mosaic** phenotype appears when these cells each choose different X chromosomes
 - The alleles on each copy encode for a different appearance, which can be seen throughout the body

EXAMPLE: Calico cats are the result of X-inactivation

