CONCEPT: TRANSCRIPTIONAL REGULATORS OF GENE EXPRESSION

How 7	Transcri	ptional	Regulators	Work
-------	----------	---------	------------	------

How Transcriptional Regulators Work	
Transcriptional regulators	gene expression by activating or repressing the transcription of genes
□ Transcriptional repressors turn genes off a	and therefore inhibit transcription
- Can compete with activators for bind	ding
- Can inhibit transcription via protein-	protein interactions
□ Transcriptional activators turn genes on, a	nd therefore activate transcription
- Help make promoters fully functiona	al by connecting with RNA polymerase
□ Can work with coactivators or corepresso	ors which help to control transcription
- Modifying chromatin structure	
- Activating the regulatory protein	
□ Mediator is a 24 subunit complex that acts	as a connector between regulatory proteins and RNA polymerase
EXAMPLE: Comparison of activators and repressors	
Activator	Gene
Repressor	Gene

- □ Rarely do they work alone, and require other interactions and ______ to be fully functional
 - Other transcription factors are recruited to regulate gene expression
 - General transcription factors: bind to core promoter site (Ex: TFIIB, TFIIH)
 - Sequence specific factors bind to regulatory sites to activate/repress expression
 - Each gene is regulated differently

EXAMPLE: Combination of transcription factors results in gene regulation

DNA binding motifs

- There are four common DNA binding ______ that transcriptional regulators contain
 - □ **Helix-turn-Helix**: One helix makes contact with the DNA, while the other helix stabilizes the interaction
 - Homeodomains are found on *Hox genes* which are crucial for proper development
 - □ Zinc Finger: Has repeats of cysteine and histidine that bind zinc and fold into a finger-like structure to bind DNA
 - □ Leucine Zipper: Dimerization of alpha helices with many leucine residues can bind DNA
 - □ **Helix-loop-Helix**: Two alpha helices connected by a loop can bind DNA
 - □ Transcriptional regulators bind to regulatory DNA sequences between 10 and 10,000 nucleotides in length
 - Regulator proteins are **degenerate** meaning they don't need an exact sequence to bind
 - They don't necessarily bind to the DNA nucleotides can recognize and noncovalently bind to the helix

EXAMPLE: DNA binding domains

- Prokaryotes use ______ RNA polymerase subunits to control gene transcription
 - □ Sigma subunit of RNA polymerase is required to recognize a promoter
 - Many sigma subunits exist and each recognizes a different set of promoters
 - ☐ Gene expression is controlled by replacing the sigma subunits of RNA polymerase

EXAMPLE: Sigma factor replacement allows for gene regulation in prokaryotic cells

Three different sigma factors

Types of Transcriptional Regulators

- Transcriptional regulators can ______ to sequences located near or far from the gene they're regulating
 - □ **Promoter-proximal** elements lie near to the promoter site
 - **Promoter** binds RNA polymerase and orients it correctly so it can transcribe the gene
 - Contains the initiation site where RNA synthesis begins

EXAMPLE: A promoter (yellow) recruiting RNA polymerase (green) to the gene (blue)

- □ There are numerous regulators that bind to DNA sequences ______ from the gene
 - Enhancer is a DNA site to which gene activators bind
 - Can be upstream or downstream from gene, and usually 1000s nucleotides away from promoter
 - DNA between enhancer and promoter loop out to allow the two regions to interact
 - Silencers is a DNA site to which gene repressors bind. Acts similarly to an enhancer
 - □ **Insulators** (barrier elements) divide chromosomes into independent segments
 - Prevents distant elements (enhancers) from acting on promoters in a different segment
 - □ **Gene control region:** entire DNA sequence involved in regulating and initiating transcription of a gene

EXAMPLE: Example of enhancer activation

Tryptophan Repressor and Lac Operon

- The amino acid ______ is a major regulator of gene expression in prokaryotes
 - □ Can bind to **operons** (stretches of many related genes) and inhibit transcription
 - Tryptophan binds to a transcriptional repressor to activate it
 - The activated repressors binds to regulatory sequences to inhibit genes involved in tryptophan creation

□ Allows gene expression to be controlled by environmental levels of tryptophan

EXAMPLE: Control of the *trp* operon

- The *lac* operon controls the ______ of lactose in *E. coli*
 - □ No lactose available: The lac repressor binds and halts transcription of lac operon
 - ☐ Glucose available: the activator Catobolie activator protein (CAP) remains inactive, but no direct repression
 - □ Lactose available: the activator **Catobolie activator protein (CAP)** binds upstream of promoter and activates

EXAMPLE: Control of the *lac* operon

The *lac* Operon and its Control Elements

PRACTICE

- 1. Which of the following is not a DNA binding motif?
 - a. Zinc Finger
 - b. Leucine Zipper
 - c. Helix-loop-Helix
 - d. Helix-zipper-Helix

- 2. What is the purpose of a transcriptional mediator?
 - a. To mediate regulation between transcription and translation
 - b. To mediate the process of transcription
 - c. To mediate between regulatory proteins and RNA polymerase
 - d. To mediate between RNA polymerase and DNA

- 4. If lactose is present, what happens to the *lac* operon?
 - a. It is activated
 - b. It is repressed