CONCEPT: GLUCONEOGENESIS AND METABOLIC REGULATION

Gluconeogenesis

- Gluconeogenesis is the process of synthesizing glucose from pyruvate
 - □ When stores of glucose are depleted, the body needs to synthesize it
 - □ Synthesis (anabolic reactions) require _____
 - Uses 4 ATPs and 2 GTPs
 - □ Runs almost in reverse of glycolysis (but not exactly in reverse three steps are different)
 - Steps 1, 3, and 10 of glycolysis are so exergonic (energetically favorable) they cannot be reversed
 - Step 10: CO₂ and a carboxyl group are added to pyruvate to form *phosphoenolpyruvate* (PEP)
 - Steps 3 and 1: Enzymes remove inorganic phosphates
 - Enzymes specific to gluconeogenesis work in these steps to bypass the huge energy requirement

EXAMPLE: Three irreversible glycolysis steps

1. Addition of CO₂ and phosphate to pyruvate (Step 10 of glycolysis)

7. Removal of a phosphate (Step 3 of glycolysis)

10. Removal of a phosphate #2 (Step 1 of glycolysis)

Feedback Regulation

- - ☐ Activated **phosphofructokinase 1** promotes glycolysis and is controlled through allosteric ATP regulation
 - When ATP is low, the allosteric site remains unbound and it remains on and promotes glycolysis
 - When ATP is high, the allosteric site is bound and it turns off which stops glycolysis
 - □ **Fructose 2,6-bisphosphate** activates phosphofructokinase 1 and inhibits gluconeogenesis enzyme FBPase
 - Allosteric activator of phosphofructokinase 1 (PFK1) and allosteric inhibitor of F1,6BPase
 - □ Metabolic enzymes are regulated via phosphorylation, allosteric modulations, and feedback inhibition

EXAMPLE: Allosteric Regulation of Phosphofructokinase 1

Energy Storage in Other Macromolecules

- Cells do not only consume glucose, but also fats and larger polysaccharides that can be broken down to release energy

 □ Fats are typically broken down into glycerol and free ______
 - Fatty acids are used to make acetyl CoA, NADH, and FADH₂
 - 16 carbon fatty acid (palmiate) = 7 NADH, 7 FADH₂ and 8 acetyl CoA (eventually leading to 131 ATPs)
 - For comparison the energy from 1 glucose makes 38 ATPs
 - □ Glycogen and starch _____ glucose as large, branched polysaccharides
 - Can be broken down and used in glycolysis
 - Glycogen phosphorylase converts glycogen into glucose 6-phosphate (step ___ of glycolysis)
 - **Phosphorolysis:** separation of glucose units by adding a P_i instead of a water (hydrolysis)

EXAMPLE: Breakdown of fatty acids to acetyl CoA, ATP, NADH, and FADH₂

(ACETYL- CoA)

PRACTICE

- 1. Which of the following is not true regarding gluconeogenesis?
 - a. It requires energy from ATP
 - b. It generates glucose
 - c. It is the exact reverse of glycolysis
 - d. It requires energy from GTP

2.	True or	True or False: Gluconeogenesis occurs in the exact reverse as glycolysis.	
		True	
	a.	nue	
	b	False	
	٠.	. 4.55	

- 3. What happens to the glycolysis and gluconeogenesis when ATP levels are high and glucose is low?

 a. Glycolysis and gluconeogenesis are activated

 - b. Glycolysis is activated and gluconeogenesis is suppressed
 - c. Glycolysis is suppressed and gluconeogenesis is activated
 - d. Nothing, the rates of glycolysis and gluconeogenesis stay the same

- 4. When phosphofructokinase-1 is active, what happens to gluconeogenesis? a. It is also activated

 - b. It is repressed
 - c. Nothing