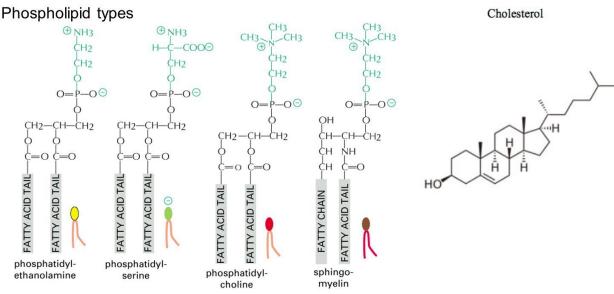
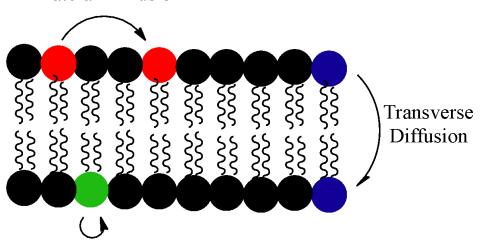
CONCEPT: THE LIPID BILAYER

Types of Lipids

- Membrane lipids are composed of a combination of nonpolar tails and polar head groups
 - □ Many molecules of the lipid bilayer are **amphipathic**, meaning they have a *hydrophobic* portion and a *hydrophilic* portion
 - □ **Phospholipids** are the most common lipid found in membranes. They have a hydrophobic tail & hydrophilic head
 - Composition of the head group determines their name: phosphatidylcholine, phosphatidylserine, etc...
 - □ **Sphingolipids** has a sphingosine (amino alcohol with long hydrocarbon tail) linked to a fatty acid
 - Composition of attached group determines their name: sphingomyelin is attached to phosphorylcholine
 - Sometimes sphingolipids are classified as phospholipids
 - ☐ **Glycolipids** are lipids attached to a sugar group
 - *Gangliosides* have an oligosaccharide chain with a net negative charge
 - Cerebrosides have a single uncharged sugar
 - Glycolipids determine your blood type (A blood has N-acetylgalactosamine, B has galactose)
 - □ **Sterols** are steroids that have a hydroxyl group and short hydrocarbon chain. Very rigid.
 - **Cholesterol** is the most common type in animal cells

EXAMPLE: Structure of common lipids



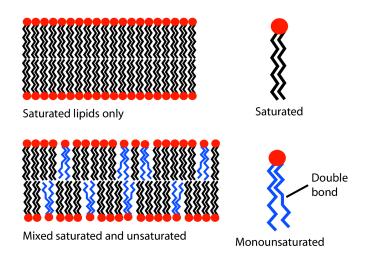

Figure 10-12. Molecular Biology of the Cell, 4th Edition.

Bilayer Formation and Fluidity

- Lipids form highly flexible *lipid bilayers* when suspended in water
 - □ A lipid bilayer is the most energetically favorable conformation of amphipathic lipids in water
 - Lipid bilayers self-seal, meaning they spontaneously form, and reform when torn apart
 - Form a boundary around a closed space
 - ☐ The **fluid-mosaic model** describes the nature membranes. The lipid bilayer is **fluid** (not stationary)
 - Lateral diffusion is the movement of individual lipids within a single layer of the bilayer occurs often
 - **Rotational diffusion** is the rotation of an individual lipid molecule (up to 500 revolutions a second)
 - Traverse diffusion is the movement from one layer of the bilayer to the other and is extremely rare
 - □ **Liposomes** are synthetically made lipid spheres used to study membrane fluidity

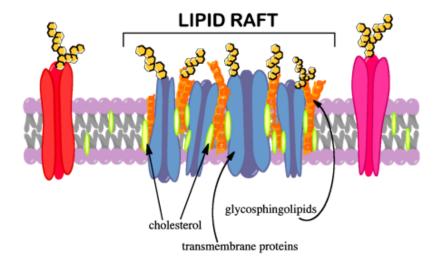
EXAMPLE: Movement of lipids in the bilayer

Lateral Diffusion


Rotational Diffusion

Bilayer Composition and Asymmetry

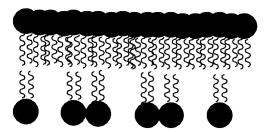
- The composition of a membrane bilayer effects its fluidity and function
 - □ Fluidity of the lipid bilayer is controlled by the amount and composition of lipids
 - Shorter hydrophobic chains = more fluid (Average is 18-20 carbons, but can be between 14-24)
 - Saturated hydrophobic chains (no double bonds) are less fluid; Unsaturated chains are more fluid
 - Double bonds form kinks in the tail, and therefore make packaging closely more difficult


- ☐ Cholesterol can modulate membrane fluidity
 - It's short and rigid nature can fill spaces left by the kinks in unsaturated hydrocarbon chains
 - Make membrane less fluid and less permeable
 - Cholesterol makes up around 20% of the weight of lipid membranes in animal cells

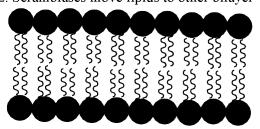
EXAMPLE: Saturation of lipid hydrophobic chains affects fluidity

- Membrane lipids are not equally distributed on each side of the lipid bilayer
 - □ Every cellular membrane has two distinct faces: the *cytosolic* face and *extracellular* face (*luminal* face)
 - The **cytosolic face** always faces the cytosol
 - The **extracellular face (luminal face)** faces the extracellular space or the lumen of organelles
 - Double bonds form kinks in the tail, and therefore make packaging closely more difficult
 - □ **Flippases** remove specific phospholipids from one side of the bilayer and flip them to the other side
 - Can be found in the ER or Golgi
 - □ **Phospholipases** are enzymes that cleave ester bonds between lipid molecules are only on cytosolic side
 - Can effect composition of lipids on the cytosolic face side of the membrane
 - □ **Lipid rafts** are functional domains on the bilayer composed on particular lipids for a particular function

EXAMPLE: Asymmetrical arrangement of lipids and proteins in a bilayer form lipid raft domains



Lipid Assembly


- Lipids are synthesized in the Endoplasmic Reticulum
 - □ Lipids are synthesized on the cytosolic surface of the ER and forms only one monolayer
 - Scramblases are responsible for taking lipids from one monolayer and inserting them into the other
 - □ Newly formed membranes then pinch off the ER to form small vesicles
 - These vesicles fuse with other membranes
 - Some newly formed lipids will remain in the ER
 - □ **Lipid droplets** are vesicular structures made of excess lipids, responsible for storing them until use
 - Fat cells contain high amounts of lipid droplets

EXAMPLE: Lipid bilayer synthesis

1. Lipid synthesis occurs on only one side of the membrane

2. Scramblases move lipids to other bilayer

