CONCEPT: RNA TRANSLATION

Translation Overview

- Translation is the process of changing a mRNA transcript to a protein
 - □ The **ribosome** is the main ______ of translation
 - Contains two subunits: small and large
 - Made up of a combination of rRNA (ribozymes) and protein
 - RNA makes up 2/3s of the ribosome by weight
 - □ The **ribosome** binds to *tRNAs* in three ______: The *A, P,* and *E sites*
 - A (aminoacyl) site: Site where tRNA recognizes the codon
 - P (peptidyl) site: Site where the amino acid is linked to the polypeptide chain
 - E (exit) site: Site where the tRNA exists the ribosome
 - ☐ An **initiator tRNA** bound to a methionine amino acid initiates translation
 - In prokaryotes it is bound to a modified methionine called *N-formylmethionine*
 - Binds to the start codon AUG

EXAMPLE: Overview of ribosomal sites and mRNA translation

7 Translation Steps in Eukaryotes

- 1. The initiator tRNA binds to the small subunit of the ribosome and other translation initiation factors (IFs/eIFs)
 - Binds to the P site only the initiator tRNA can bind here if the large subunit isn't attached
- 2. This complex binds to the 5' end of the mRNA transcript and scans it until it reaches AUG

3. The large subunit is recruited to the AUG site - translation initiation proteins dissociate from complex

- 4. The amino acid is cleaved from the initiator tRNA in the P site, while the second tRNA is brought to the A site
 - Large subunit: contains peptidyl trasnferase (23S rRNA) which bonds the amino acids together
 - Small subunit: responsible for matching tRNAs to appropriate mRNA codons

- 4. After linking amino acids, the ribosome moves three nucleotides (1 codon) moving the tRNA from P to E site
 - Elongation factors (EFs) assist in translation elongation by hydrolyzing GTP
 - Common ones include EF-tu which promotes binding of tRNAs to mRNAs (prokaryotes)
- 5. The tRNA exits the ribosome and the process continues for the length of the mRNA
 - The mRNA is pulled through the ribosome in a 5' to 3' direction

- 6. Translation is terminated when it reaches a stop codon: UAA, UAG, or UGA
 - This causes the accumulation of release factors that signal the ribosome to hydrolyze a water molecule
- 7. The protein and ribosome are released from the mRNA which can then start again

- □ These steps can occur quickly and require lots of ribosomes
 - 25% of *E.coli* weight is from ribosomes
 - Mammals contain 10 million ribosomes

Prokaryotic Translation

- ☐ The **Shine-Dalgamo** sequences is where the prokaryotic ribosome binds upstream of start codon
- □ The prokaryotic ribosome is slightly smaller than the bacterial ribosome
- □ Antibiotics work by targeting prokaryotic ribosomes and leaving eukaryotic ribosomes alone

EXAMPLE: The shine-dalgamo sequence upstream of the AUG start codon

Polyribosomes

- Polyribosomes _____ on a single transcript so multiple mRNA copies can be translated at the same time
 - □ Saves time, as it can take several minutes to copy a single transcript
 - □ Each ribosome can begin when the proceeding on has translated around ~80 nucleotides
 - Contains two subunits: small and large
 - Made up of a combination of rRNA (ribozymes) and protein
 - RNA makes up 2/3s of the ribosome by weight

EXAMPLE: Example of polyribosomes on a single mRNA transcript

PRACTICE

- 1. Which of the following is not true regarding translation?
 - a. Only the initiator tRNA can initiate translation
 - b. Only one ribosome can translate a gene at a time
 - c. Each tRNA must be passed through three sites on the ribosome
 - d. The large subunit is responsible for bonding amino acids together to form the polypeptide chain

- 2. Which ribosomal site of protein synthesis does the initiator tRNA bind to initiation translation?
 - a. A site
 - b. P site
 - c. E site

3.	a. Small subb. Large sub		to the mRNA first?
4.	Elongation factors a. ATP hydro b. Break dow c. Formation d. GTP hydro	vn of H ₂ O of H ₂ O	arough which of the following processes?

5. What sequence does the prokaryotic ribosome bind in order to initiate translation?
a. Shine dalgamo sequence
b. Start codon: AUG
c. Start codon: UGA

- 6. True or False: Only one copy of a protein can be synthesized at one time.
 - a. True

d. Peptidyl sequence

b. False