CONCEPT: ELECTRON MICROSCOPY

 Electron microscopy uses electrons to 	cells
□ Improved <i>limit of resolution</i> , up to 0.0	002nm (100,000x greater than light microscope)
$\hfill\Box$ To perform electron microscopy, the	samples have the be properly
- Specimens need to be prese	rved using special chemicals
- Specimens need to be sliced	extremely thin (1/200 thickness of a cell)
□ There are many ways to process sal	mples
- One way to process the sam	ple is to use immunogold staining
- Immunogold staining	g labels specimens with electron dense gold (via antibodies)
- Metal shadowing is used by	coating specimen with metal at one angle, creating electron dense shadows
□ There are two main	of electron microscopy

- **Transmission electron microscopy** which shoots electrons through the samples
- **Scanning electron microscopy** which scans electrons over the specimen's surface.

EXAMPLE: Electron microscopy image of mitochondria

PRACTICE:

- 1. True or False: Light microscopy has an improved limit of resolution compared to electron microscopy.
 - a. True
 - b. False

- 2. Which of the following types of microscopy works by shooting electrons through the specimen?
 - a. Light microscopy
 - b. Transmission electron microscopy
 - c. Scanning electron microscopy
 - d. FRAP floruences microscopy