CONCEPT: ENERGY SOURCES AND CONSUMPTION

Energy Sources

- To survive, cells need a constant source of _______
 - □ Second law of thermodynamics states that disorder in the universe only increases
 - Entropy is the measure of a system's disorder
 - Systems will spontaneously change towards more entropy
 - □ Living cells must generate _____ in a disordered environment
 - **Energy** = the capacity to do work. It allows for chemical and physical changes that lead to order in the cell
 - A **calorie**, which is the energy required to raise the temperature of 1g of H₂O by 1°C, is the unit of energy
 - 1 Joule (from chemistry) = 0.239 calories

EXAMPLE: Card tower demonstrating entropy and energy

- Potential energy (stored energy) and Kinetic energy (energy due to motion) are the two main energy classifications
 - □ In cells kinetic energy includes energy from heat (thermal), light (radiant), and electrons (electrical)
 - □ In cells, potential energy can be found in chemical bonds, and in *membrane concentration gradients*
 - □ Cells must do **work**, which is a measure of the required to move or effect an object
 - Synthetic work: changes in chemical bonds
 - Mechanical work: changes in location or orientation of cell structure

- Concentration work: Moving molecules across a membrane (membrane concentration gradients)
- Electrical work: Moving ions across a membrane
- Heat: Maintenance of body temperature
- Bioluminescence: Production of light

EXAMPLE: Potential energy to kinetic energy transformations

Energy Consumption

- Cells must be able to transfer energy from one form to another
 - □ First law of thermodynamics states that energy cannot be created nor destroyed only _____
 - **Phototrophs** use *photosynthesis* to change light energy into chemical energy (sugars)
 - **Chemotrophs** change organic nutrients into freely usable energy (CO₂, H₂O)
 - Energy and heat continually cycle between organisms and the universe in the form of C, O, N, and H₂0
 - □ **Metabolism** is the _____ of chemical reactions in the cell is made up of two components:
 - Catabolism is the breakdown of food into smaller molecules
 - **Anabolic** is the synthesis of molecules
 - Enzymes are proteins that assist with cellular chemical reactions

EXAMPLE: Cyclic energy transfer between phototrophs and chemotrophs

- The movement of _____ control energy transfer in cells
 - □ **Oxidation** is the removal of electrons from an atom or molecule; It releases energy
 - Cellular respiration depends on the oxidation of organic molecules to consume and use energy from food
 - □ **Reduction** is the addition of electrons to an atom or molecule; It requires an energy input

EXAMPLE: Oxidation and reduction reactions between NAD+ and NADH

PRACTICE:

- 1. Which of the following is a measure of the energy needed to move a sodium ion from a high concentration to a low concentration?
 - a. Kinetic Energy
 - b. Entropy
 - c. Potential Energy
 - d. Work

- 2. True or False: Reduction is the process of adding electrons to an atom or molecule?
 - a. True
 - b. False

- 3. Metabolism, which is the sum of chemical reactions, consists of all but which of the following components?
 - a. Catabolism
 - b. Melabolism
 - c. Anabolism