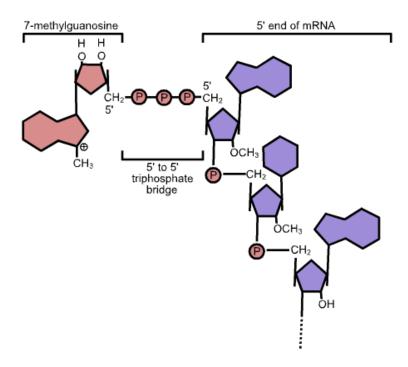

CONCEPT: mRNA PROCESSING

 After transcription, eukaryotic pre-mRNA, which is a newly 	transcribed mRNA, must be processed to become mRNA
□ Processing occurs in the	and is required before moving to the cytosol
- Distinguishes mRNA from other RNAs	
- Exosomes are a protein complex that degra	des RNA that isn't in the final mRNA form
☐ The C-terminal domain of RNA polymerase II carri	ies responsible for RNA processing
- RNA polymerases I and III lack this domain,	and so their transcripts do not undergo the same processing
□ Processing occurs during transcription	
□ Heterogeneous ribonucleoprotein particles (hnF	RNPs) are formed by RNA binding to numerous proteins
- Prevent RNA from forming secondary struct	ures


EXAMPLE: Simple drawing of the RNA polymerase II C-terminal domain

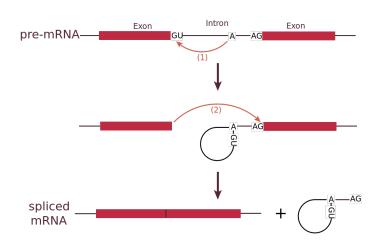
5' RNA Capping

- RNA capping occurs at the 5' end of the transcript
 - □ Three enzymes work to cap the 5' end of the transcript with a special _____ guanine
 - Phosphatase removes phosphate from 5' end
 - Guanyl transferases add a guanine mono-phosphate (GMP) in a unique way (binds 5' to 5')
 - Methyl transferases add a methyl group to the guanine at position 7 on the ribose sugar ring
 - □ 5' capping occurs after RNA polymerase has transcribed ~25 nucleotides of RNA
 - □ Prevents enzymes that ______ RNA (*RNAses*) from destroying the transcript

EXAMPLE: The 5' cap structure

3' Polyadenylation

- RNA poyladenylation (addition of repeating A nucleotides) occurs at the 3' end of the transcript
 - □ RNA is _____ at a specific sequence
 - Two cleavage signal sequences exist: AAUAAA (upstream) and a GU rich region (downstream)
 - Cleavage stimulatory factors interact with the GU sequence (CPSF and CStF)
 - □ The poly-A polymerases (PAP) begins adding a linear sequence of adenine nucleotides to the cleavage site
 - Begins at an AU rich site located at end of cleavage site
 - First 12 As are slowly assembled, but then the next 200-250 go much faster
 - Requires no template


EXAMPLE: Polyadenylation signals at the 3' end of the transcript

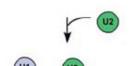
Overview of RNA Splicing

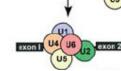
- Introns (non coding segments) must be ______ from the pre-mRNA
 - □ RNA splicing removes introns from pre-mRNA
 - Introns vary greatly in size, but exons (coding sequences) average 150 nucleotides long
 - □ Introns contain specific sequences between 30-40 nucleotides long that for splicing
 - 5' splice site begins with a GU sequence (more common) or AU sequence (less common)
 - 3' splice site ends with an AG sequence (more common) or AC sequence (less common
 - Branch point are special sequences located several dozen nucleotides upstream from 3' end
 - □ Improper splicing accounts for 15% of genetic disorders

EXAMPLE: Overview of RNA splicing

- ☐ The **spliceosome** complex is responsible for splicing most RNA
 - Composed of **small nuclear RNA** (snoRNA), which are divided into five groups (U1, U2, U4, U5, U6)
 - The **small nuclear ribonucleotproteins** (snRNPs) are formed by 6-10 splicing proteins bind to snoRNAs
 - The snRNPs form _____ of spliceosome and recognize the splice sequences

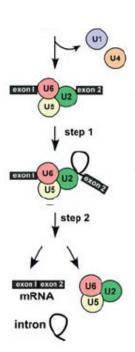
7 Steps of Splicing


1. The snRNP (U1 snoRNA) binds to the mRNA at the 5' splice site


AG exon 2

exon | GU -

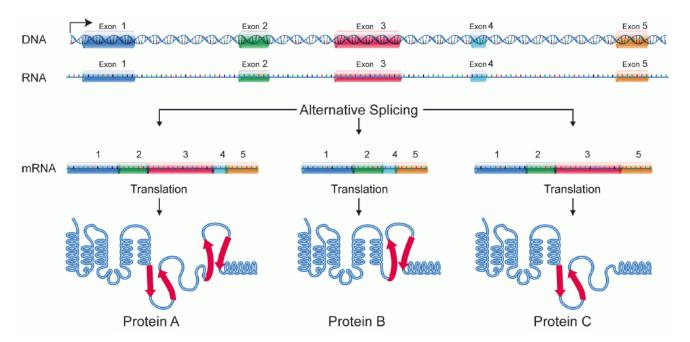
2. A snRNP (U2 snoRNA) binds to the branch point sequence



3. Other proteins are recruited to form the full spliceosome complex

- 4. The pre-mRNA is cleaved at 5' splice site and looped to the branch point sequence (called *lariat*)
- 5. The pre-mRNA is cleaved at 3' splice site by a transesterfication reaction

6. The two exon ends are joined together



- 7. The **exon junction complex** is recruited to the newly joined exons to assist in nuclear export
- □ RNA-RNA rearrangements occur during most of these steps
 - Interaction between the RNA and spliceosome are disrupted and differently reformed

Splicing Forms

- Self-splicing introns can splice _____ a spliceosome
 - □ These introns fold into complex secondary structures
 - □ Introns contain specific sequences between 30-40 nucleotides long that signal for splicing
 - 5' splice site begins with a GU sequence (more common) or AU sequence (less common)
- Regulation of ______ is a form of regulating of gene expression
 - □ Alternative splicing combines different combinations of exons to create different forms of the same protein
 - □ Condensed chromatin can slow the rate of transcription and pre-mRNA processing
 - Exon skipping can occur if the process is moving quickly
 - Specific histone modifications can recruit proteins to RNA to control transcription or processing

EXAMPLE: Model of alternative splicing

RNA Editing

- RNA editing changes or alters the pre-mRNA nucleotide sequence
 - □ Can insert or remove multiple nucleotides in a pre-mRNA transcript
 - □ Deamination (remove an amino group) of specific nucleotides can occur
 - Uridine forms from a deaminated cytosine
 - Inosine forms from a deaminated adenine
 - □ **Guide RNAs** control RNA editing

EXAMPLE: RNA editing results in the addition of multiple Uracil's to the transcript

AGCTGCCAATTGCGCATTCCAACCGGATACGCG	DNA
Transcription of DNA to Pre-edited RNA AGCUGCCAAUUGCGCAUUCCAACCGGAUACGCG	Pre-edited
	RNA
Guide RNA gives template for editing UCGACGGUUAACGAACGUAAGAGUUGGCCUAUG	gRNA
AGCUGCCAAUUGC GCAUUC CAACCGGAUAC	Pre-edited
	RNA
Editing of pre-mRNA AGCUGCCAAUUGCUUGCAUUCUCAACCGGAUAC	Edited RNA

PRACTICE

- 1. Which of the following is NOT a processing event pre-mRNA undergoes to become mRNA?
 - a. The addition of an extended sequence of repeating A nucleotides at the 3' end of the transcript
 - b. The addition of a methylated guanine at the 5' end of the transcript
 - c. Splicing out exons to connect the introns
 - d. Removal of 1+ nucleotides in the pre-mRNA transcript

- 2. Which snoRNA is the first to bind to the 5' splice site during splicing?
 - a. U1
 - b. U2
 - c. U3
 - d. U4

- 3. Which of the following is not a sequence that is required for splicing?
 - a. 5' GU sequence
 - b. 3' AG sequence
 - c. Branch Point
 - d. Splice Sequence

- 4. Guide RNAs are responsible for what?
 - a. Guiding the spliceosome to the correct splicing sequence
 - b. Determining the position of RNA editing
 - c. Adding the poly-A tail to the mRNA
 - d. Adding the 5' cap to the mRNA

- 5. RNA processing occurs where in the cell? a. Nucleus

 - b. Cytoplasmc. Endoplasmic Reticulumd. Golgi