CONCEPT: DNA REPLICATION

Overview of DNA replication

- DNA replication begins by using one strand as a template (semiconservative replication)
 - □ **Replication origins** are specific DNA sequences where replication begins
 - Initiation proteins bind these regions
 - ☐ Two **replication forks** are formed at each replication origin
 - Bidirectional replication occurs using each strand is used as a template strand
 - □ **DNA polymerase** catalyzes the replication of DNA
 - Adds nucleotides to the 3' end of a growing DNA strand (replications forms new strand in 5' to 3' direction)

EXAMPLE: Structure of replication

DNA Replication Machinery

- DNA replication is characterized by bidirectional replication
 - □ Both strands are replicated at the same time
 - DNA Polymerase reads the template DNA strand in a 3' to 5' direction and synthesizes the new DNA strand in the 5' to 3' direction
 - **Leading strand** is *continuously* synthesized in the 5' to 3' direction
 - **Lagging strand** is *discontinuously* synthesized in the 5' to 3' direction
 - **Okazaki fragments** are the small fragments of replicated DNA that are bound together to form the lagging strand.

□ DNA Replication Machinery:

- RNA primer is composed of around 10 RNA nucleotides and is used to begin DNA replication
- **Primase** synthesizes the RNA primer utilizing the template DNA strand
- Repair polymerase replaces the RNA with DNA
- DNA ligase joins the Okazaki fragments together

EXAMPLE:

- DNA Replication Machinery (continued):
 - □ **DNA helicases** are enzymes that pry the two DNA strand apart (breaks hydrogen bonds between bases)
 - □ Single-strand DNA binding proteins (SSB) bind to single stranded DNA to prevent reforming a double helix
 - □ **DNA topoisomerases (DNA gyrase)** help prevent DNA supercoiling during replication
 - □ Sliding clamp (beta clamp) keeps DNA polymerase attached while it's replicating DNA
 - **Clamp loader** hydrolyzes ATP to clamp DNA (removed and reattached between Okazaki fragments)

EXAMPLE:

Telomeres

- DNA replication occurs differently at telomeres (ends of the chromosomes)
 - □ Leading strand has no problems replicating the end of the chromosomes
 - □ Lagging strand can't replicate the end of the chromosome because the RNA primer can't bind
 - □ **Telomeres** are long repetitive nucleotide sequences at the end of the chromosome
 - Telomerase uses an RNA template (on the enzyme itself) to extend the lagging strand
 - Adds short repetitive DNA sequences to the DNA template so lagging strand can finish

EXAMPLE: Telomerase allowing for replication of end of chromosome

TTAGGGTTAGGGTTAGGG
Telomerase

TTAGGGTTAGGGTTAGGG
TAGGGTTAGGGTTAGGG
AATCCCAATCCCAAUCCC Telomerase

DNA RNA
Polymerase

Replication Fidelity and Proofreading

- DNA replication is highly accurate
 - ☐ There is one error per every 10⁷ (ten million) replicated nucleotide bases (human genome ~ 3 billion base pairs)
 - Very rarely, DNA Polymerase will match base pair incorrectly
 - **Proofreading** is the ability of the polymerase to double check and correct mismatched bases
 - □ Proofreading occurs before the next nucleotide is added
 - If the previous match was incorrect then it removes it and replaces it with the correct one
 - removal of mismatched bases is done by the DNA Polymerase's 3' to 5' exonuclease activity
 - □ DNA can only be synthesized in the 5' to 3' direction:
 - dNTPs (deoxyribose nucleoside triphosphates) have 3 phosphate groups attached to a DNA nucleoside
 - 2 of the phosphate groups are removed releasing energy to power DNA synthesis
 - the 3' end of the growing DNA strand helps remove the 2 phosphates of the dNTPs
 - The 5' end wont undergo this reaction so the phosphate remains on the nucleoside instead of hydrolyzing

EXAMPLE: DNA polymerase proofreading & the addition of new dNTPs

PRACTICE

- 1. DNA replication occurs differently at telomeres.
 - a. True
 - b. False

- 2. DNA is replicated in which of the following directions?
 - a. 5' to 3'
 - b. 3' to 5'
 - c. 5' to 5'
 - d. 3' to 3'

- 4. Only the lagging strand uses telomerase to replicate the ends of the telomeres.
 - a. True
 - b. False