CONCEPT: MHC AND ANTIGEN PRESENTATION

Class I

- Class I major histocompatibility complex (MHC) bind to antigens and activate Tc cells
 - \Box Structure consists of a single polypeptide chain with a non-MHC peptide (β 2-microglobulin)
 - Single peptide binding site that fits 8-10 amino acids (binds peptide ends)
 - □ Uses 6 steps to present antigens
 - 1. Intracellular pathogen is present in cytosol (from infected cell, or cell expressing viral genes)
 - 2. Pathogen is targeted for destruction by ubiquitin
 - 3. The pathogen is degraded via the proteasome
 - 4. The antigen is transported into the ER (via the *TAP complex*)
 - 5. In the ER the antigen binds to the MHC class I molecule
 - 6. The MHC-antigen complex is expressed on the plasma membrane

EXAMPLE:

Class II

- Class II major histocompatibility complex (MHC) bind to antigens and activate Th cells and T regulatory cells
 - □ Structure consists of a heterodimer encoded by MHC genes
 - Single peptide binding site that fits 12-20 amino acids (binds entire peptide length)
 - □ Uses 6 steps to present antigens
 - 1. Extracellular pathogen is taken up by the cell
 - 2. The pathogen is moved to the lysosome for destruction
 - 3. The pathogen is degraded into tiny antigens
 - 4. The MHC class II molecule is made in the ER and complex with a small protein called Li
 - 5. The MHC class II enters the lysosome and Li is cleaved to leave small molecule called CLIP
 - 6. CLIP is replaced with the antigen in the lysosome
 - 7. The MHC-antigen complex is moved to the cell surface.

EXAMPLE:

PRACTICE:

- 1. Which MHC class presents intracellular pathogens?
 - a. MHC class I
 - b. MHC class II

- 2. MHC class I is used to activate which of the following cell types?
 - a. Antigen presenting cellsb. Cytotoxic T cells

 - c. Helper T cells
 - d. Regulatory T cells