CONCEPT: EUKARYOTIC CELL ARTCHITECTURE

Main Eukaryotic Features

- Eukaryotic cells are ______ by a few distinct features
 - □ Eukaryotic cells store DNA in a **nucleus** that is enclosed by a double membrane **nuclear envelope**
 - Contains **nuclear pores** which allows for transport in/out of the nucleus
 - Contains **nucleoli**, where **ribosome** synthesis occurs
 - □ Eukaryotic cells have **organelles**, which are membrane bound
 - ☐ These cells **cytoskeletal** structural components which provide support to the cell
 - ☐ These cells have a **plasma membrane** to separate the intra and extracellular environment
 - Formed by a **lipid bilayer** made of **amphipathic** lipids **(hydrophilic/hydrophobic)**
 - Contains **membrane proteins** that allows for interaction between the intra / extracellular environment

EXAMPLE: Basic structure of a eukaryotic cell

Eukaryotic Organelles

- Eukaryotic cells contain numerous membrane bound _______, each with a different function
 - □ **Endoplasmic reticulum:** Proteins are synthesized and exported to other compartments
 - Two main types: Rough (place of protein synthesis) and Smooth (place of lipid synthesis)
 - □ **Golgi Apparatus:** Place of protein modification, sorting, transport, and secretion

■ Mitochondria: Responsible for cellular respiration and production of ATP

 Contains own DNA, and ribosomes
 Chloroplast: Location of photosynthesis as well as synthesis of organic molecules (sugars)
 Contains own DNA, and ribosomes
 Lysosome: Responsible for intracellular digestion
 Peroxisomes: Provides safe compartment for toxic chemical reactions and products (Hydrogen peroxide)
 Vacuoles: Place for temporary storage
 Plant cells contain a single large vacuole that stores water to maintain turgor pressure
 Vesicles: Transports materials to other cellular locations
 Have major roles in endocytosis and exocytosis of materials
 Cellular organelles are __________ in cytosol and are filled and surrounded by cytoplasm

EXAMPLE: Internal structure of a Eukaryotic cell and comparison between cytosol and cytoplasm

- Place of protein/lipid synthesis and other chemical reactions

Eukaryotic Origins

- Multiple theories exist about the ______ of Eukaryotic cells
 - □ It is thought that Eukaryotic cells evolved from predatory prokaryotic cells
 - Larger Eukaryotic cell size is due to predation of smaller cells
 - □ **Endosymbiont Theory** explains the presence of mitochondria and chloroplasts
 - They contain their own DNA
 - □ Unknown if Eukaryotic cells came from a Bacteria or Archaea ancestor

EXAMPLE: Representation of the endosymbiont theory explains how mitochondria evolved

Eukaryotic Structural Features

Eukaryotic cells are supported through a complex	system
$\hfill \square$ Microtubules: Hollow cylindrical proteins that are responsible for m	otility and cell organization/shape
□ Microfilaments (Actin filaments): Thin, polarized, proteins responsible for muscle contraction	
□ Intermediate filaments: Provide a stable "scaffold" for cell structure.	
□ These structural components provide the framework for internal transport	
- Motor proteins transport vesicles across the cell	

□ They also provide the _____ support for cell division

EXAMPLE: Cellular staining of cytoskeletal structures. Actin filaments are red, and microtubules are green

Eukaryotic Genetic Features

- Eukaryotic DNA structure and _____ allow for tight control of gene expression and cell division
 - □ Eukaryotic DNA is formed into linear chromosomes, and packaged by histone proteins
 - **Chromatin** is the combination of DNA and **histone** protein
 - DNA packaging is necessary due to the size of the eukaryotic **genome**
 - Large stretches of "junk DNA" of unknown function
 - □ **Gene expression** is ______ by physically separating location of transcription and translation
 - Transcription occurs in nucleus; Translation occurs in cytoplasm
 - □ Eukaryotic cell division can result in genetically identical cells (**mitosis**) or genetically similar cells (**meiosis**)

EXAMPLE: Process of DNA packaging into chromatin (2) and chromosomes (5)

Multicellular Structures

- Eukaryotic cells can form extracellular matrixes and multicellular organisms
 - □ The extracellular matrix attaches cells together and provides ______ structure
 - Generally made up of collagen and proteoglycans
 - Is flexible, allowing for movement of the cells or organisms
 - $\ \square$ Plant cells have cell walls made up of cellulose, which provide support to the cell
 - Plasmodesmata connect plant cells through cytoplasmic bridges between cell walls
- □ Groups of cells eventually evolved to multicellular tissues and organisms, which allowed for cell **differentiation**

EXAMPLE: 1. Extracellular matrix extends from the bottom layer of skin cells. 2. Plant cells connected by plasmodesmata

1. 2.

PRACTICE:

- 1. Which of the following is true about eukaryotic cells?
 - a. They all contain a plasma membrane, a cell wall, and divide through mitosis
 - b. They all contain a plasma membrane, store their DNA in a nucleus, and have membrane bound organelles
 - c. They all contain a plasma membrane, have cytoskeletal elements, and do not contain a nucleus
 - d. They all contain a plasma membrane, divide through mitosis, and do not contain a nucleus

- 2. Which of the following organelles is the place of protein synthesis?
 - a. Golgi
 - b. Vesicle
 - c. Nucleus
 - d. Endoplasmic Reticulum

- 3. Which of the following is not a major structural component of the eukaryotic cell?
 - a. Microtubulues
 - b. Actin Filaments
 - c. Plasmodesmata
 - d. Intermediate Filaments

- 4. The extracellular matrix is important because it does what?
 - a. Allows water to flow in and out of the cell
 - b. Attaches cells together and provides support for multicellular structures
 - c. Connects plant cells through a cytoplasmic bridge
 - d. Provides support to the plasma membrane from inside the cell