CONCEPT: PROPERTIES OF THE CELL

- 1. Cells **Evolve**, or adapt to their circumstances over time
 - □ Complex organic molecules originally came from spontaneous formation in an ancient organic soup
 - □ Single ancestral cell formed around _____ billion years ago
 - □ Three domains of living cells have evolved: Archaea, Bacteria (Prokaryotes) and Eukarya (Eukaryotes)
 - DNA/RNA sequencing can identify differences and similarities between the domains
 - **Mutations**, or changes in the DNA sequence, drive evolution

EXAMPLE: Three domains of living organisms

- 2. Cells are organized, complex, and varied in their size and appearance
 - □ All cells have a **plasma membrane** that acts to provide shape and support to the cell
 - Membranes are made up of hydrophilic and hydrophobic components that assemble into a bilayer
 - □ Differences in the internal _____ of cells exist between prokaryotes and eukaryotes
 - Eukaryotes have **organelles** and a nuclear envelope to divide DNA from other cellular components
 - ☐ There is great diversity in the size and appearance of cells
 - Cells size can range from a *Lactobacillus* bacteria (25μm) to a frog egg (1mm)
 - Cell shape can extend like a nerve cell or can have projections like an amoeba

EXAMPLE: Prokaryotic cell shapes

\sim	A 11		4.					
`~	(, ∇ IIC	contain a	ADDATIC DEAL	aram and	machanieme	to control	MANA AV	nraccion
J.	OGIIO	Contain a	genetic proj	grann and	l mechanisms	to control	gene ex	.pi cəəidii

- □ Each cell has a collection of **genes** that are encoded by _____
 - Nucleotides made with deoxyribose sugar, phosphate group, and base (A,T,C,G) = building blocks
 - Size of **genome** can vary greatly (smallest = 500 genes; 60 genes are shared by all organisms)
- □ Heredity is a mechanism of passing genes to offspring
- □ To express genes the DNA is **transcribed** to RNA and then **translated** to protein (**Central Dogma**)
 - Messenger RNA (mRNA) contains Uracil instead of Thymine
 - Transfer RNA (tRNA) read mRNAs to string together the appropriate amino acid code
 - Occurs in the ribosome which is made up of ribosomal RNA (rRNA)
 - Proteins are composed of amino acids arranged in a polypeptide chain; they can act as enzymes
 - All cells in a multicellular organism have same genome; differences stem from gene expression control
- □ Gene expression can also occur through _____ molecules with activities like those of proteins

4. Cells replicate in order to produce more of themselves

- □ **DNA replication** is the basis of all cell division
 - Each strand of the helix is pulled apart and serves as a **template** during replication
- □ Cell **division** results in the production of two separate genetically identical or similar cells
 - Mitosis creates two genetically _____ cells and consists of three phases: G, S and M
 - Daughter cells are produced by asymmetric cell division. These are two genetically different cells.
- □ Cells are considered the basic unit of living matter

EXAMPLE: During the S phase of Mitosis DNA replication occurs by splitting the two DNA strands

5. Cells require and use energy

- □ Source of energy varies greatly
 - Organotrophic: organisms that harvest energy from other living things
 - **Phototrophic:** organisms that harvest the energy of sunlight
 - Lithotrophic: organisms that harvest the energy of inorganic chemicals
 - Anerobic doesn't require oxygen; aerobic requires oxygen
- □ Cells use _____ to form important **macromolecules** used in a variety of cell functions
- ☐ The principles of **free energy** explain the mechanisms of cell energy acquisition and usage

EXAMPLE: The four classes of macromolecules

6. **Metabolism**, or a sum of all chemical reactions in a cell, is a necessary component of cell biology

- □ Adenosine tri-phosphate (ATP) is the main energy _____ molecule that is crucial for cellular activities
- □ **Metabolic pathways** are crucial network of chemical reactions responsible for energy transfer.
 - Examples include: Photosynthesis, Oxidative Respiration, and Glycolysis
- □ Proteins can act as chemical reaction **catalysts**; these proteins are called **enzymes**

EXAMPLE: Structure of ATP

7. All cells engage in mechanical activities that help regulate diverse cellular functions

□ ______ of materials in and out of the cell is crucial to keep the cell "running"

- Diffusion, or movement of a substance between areas of differing concentration is affected by size
- Material movement is controlled through proteins found in the plasma membrane
- A balanced *surface area to volume ratio* is necessary for cellular uptake/expulsion
- □ Assembly and Disassembly of structural components helps provide mechanical support for the cell
 - Cell movement occurs through mechanical support and assembly of structural components

EXAMPLE: Proteins embedded in a membrane facilitate interaction with extracellular environment

8. Cells respond to external stimuli

□ Rece	otors on the	plasma membrane	can bind to and res	pond to	si	ar	nals

□ Internal cellular responses depend on having proper concentrations of reactants and catalysts

9. Cells self-regulate

□ Plasma membrane helps to regulate the cell's chemistry

□ Feedback circuitry are mechanisms that respond to levels of signaling molecules within a cell

EXAMPLE: Plant responds to external environment

PRACTICE:

- 1. Which of the following is not a property of all cells?
 - a. Evolution
 - b. Use of energy
 - c. Genetic program to control gene expression
 - d. Mobility

2.	Which of the following terms describes an organism who obtains energy from sunlight? a. Organotrophic b. Lithotrophic c. Phototrophic d. Aerobic
3.	True or False: To be considered a cell, it must evolve, have metabolism, replicate its DNA, and never interact with the external environment? a. True b. False
	D. False