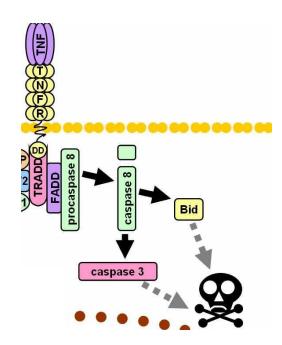
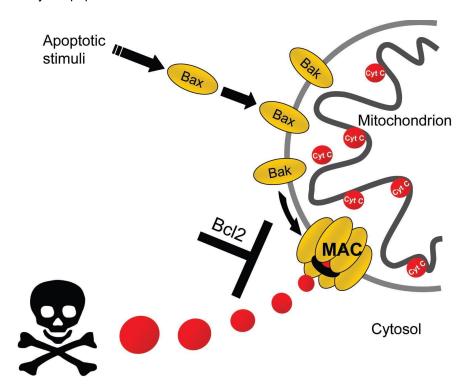

CONCEPT: CONTROL OF CELL DEATH

<u>Overview</u>

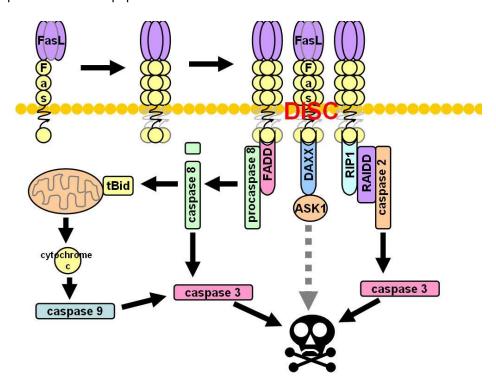

- Apoptosis is the process of _____ cell death
 - □ Important because it balances cell division
 - □ It's regulated death (neat and clean doesn't damage any other cells)
 - 1. The cell begins to degrade into blebs
 - 2. Nuclear envelope degrades
 - 3. DNA degrades
 - 4. Cytoskeleton collapses
 - 5. Cell is dismantled into small apoptotic bodies
 - □ Controlled extrinsically and intrinsically

EXAMPLE: Apoptosis vs. necrosis

- Caspases are the proteins responsible for ______ different parts of the cell
 - □ **Procaspases** are the precursor forms of caspase proteins
 - The procaspase must be activated via cleavage
 - Activated caspases can cleave and activate other caspases
 - □ Inhibitors of apoptosis (IAPs) bind and inhibit or cause degradation of caspases to block apoptosis


EXAMPLE: Caspases promoting apoptosis

Triggering Apoptosis


- - □ **Bcl2 family** of proteins plays a major role in inhibiting apoptosis
 - Cytochrome C is released from mitochondria into cytosol
 - Cytochrome C then binds to a variety of proteins that trigger apoptosis
 - DNA damage results in release of Bax and Bad which act to release cytochrome C
 - Bcl2 can bind to Bax and Bad to prevent cytochrome C release and apoptosis

EXAMPLE: Intrinsic pathway of apoptosis

- - □ **Death receptors** trigger apoptosis when activated
 - Ex: Fas receptor binds Fas (ligand)
 - Activates the death-inducing signaling complex (DISC) which stimulates apoptosis
 - □ **Survival factors** suppress apoptosis when activated
 - Can inhibit Bad (which triggers intrinsic pathway)
 - Can regulate Bcl2 family proteins

EXAMPLE: Fas receptor induction of apoptosis

PRACTICE:

- 1. True or False: Apoptosis can only be stimulated through intracellular signals.
 - a. True
 - b. False

- 2. In the intrinsic pathway of regulating apoptosis, Bcl2 controls what?
 - a. It releases cytochrome C from the mitochondria
 - b. It binds to cytochrome C and prevents its release
 - c. It binds to Bad and Bax and prevents cytochrome C release
 - d. It binds to Bad and Bax and triggers cytochrome C release

- 3. Which of the following suppresses apoptosis?

 a. Release of cytochrome C from the mitochondria
 - b. Survival Factors
 - c. Death Receptors
 - d. Caspases