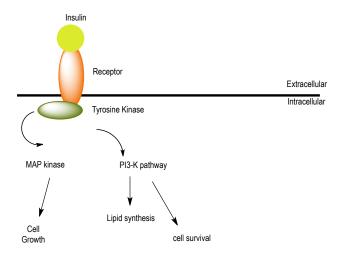

CONCEPT: INTEGRATION OF MULTIPLE SIGNALING PATHWAYS

- Signaling pathways do not work independently of other signaling pathways and are not ______ pathways
 - □ **Signaling networks** are pathways that are connected via crosstalk between individual signaling molecules
 - Numerous extracellular signals
 - Protein kinase overlapping in multiple pathways
 - Cross-talk between second messenger
 - ☐ There can be positive and negative interactions
 - Feedback loops when the end product mediates activity of an early product
 - Feedfoward relays activity of one component stimulates a distant downstream component
 - □ The signaling networks in the cell are _____
 - 1500 receptors, 700 kinases/phosphatases, and 2000 transcription factors


EXAMPLE: Complexity of signaling networks

Insulin Signaling

- Insulin and glucagon work together to maintain stable blood ______ level in the cells
 - ☐ Two hormones: insulin and glucagon
 - □ After a meal there is lots of glucose in the blood stream
 - Triggers the cell to create and release insulin
 - Insulin binds to insulin receptors
 - □ Insulin binding triggers a variety of pathways including:
 - Protein kinase B phosphorylation triggers intracellular vesicle fusion, and import of glucose into the cell
 - □ When blood glucose levels drop insulin receptors stop being activated
 - triggers the cells to increase secretion of glucagon
 - Glucagon binds its receptors and stimulates a variety of other signaling pathways

EXAMPLE: Variety of insulin signaling pathways

PRACTICE:

- 1. True or False: A signaling network is usually linear, with little interaction with other signaling pathways.
 - a. True
 - b. False

- 2. When insulin binds to insulin receptors what happens to glucose?
 a. Glucose is brought into the cell

 - b. Glucose is created by the cell
 - c. Glucose is exported into the bloodstream
 - d. Glucose is degraded