CONCEPT: ENZYME KINETICS - Enzyme **kinetics** measure the activity of an enzyme - □ Measures ______ between substrate concentration and speed of enzyme reactions - Low substrate concentrations: less collision between enzyme and substrate = substrate is rate limiting - High substrate concentrations: more collision between enzyme and substrate = enzyme is rate limiting - □ It should be measured before any product has been formed **EXAMPLE**: Collisions between substrate and enzyme happen when there is a higher substrate concentration ## Representations of Enzymes Kinetics - V_{max} and K_m (*Michaelis constant*) are measures of enzyme ______ - \Box V_{max} measures the maximum velocity (speed) of the enzymes reaction - Occurs as the substrate concentration is **saturated** which is when its reached it's upper limit of reactivity - High substrate concentrations: more collision between enzyme and substrate = enzyme is rate limiting - \Box K_m measures the enzyme's function by determining the concentration of substrate needed to work half V_{max} - Small K_m enzyme binds tightly, Large K_m the enzyme binds weakly - □ Can be used to calculate the **turnover number** which is how rapidly a substrate molecule can undergo a reaction **EXAMPLE:** Graph demonstrating relationship between V_{max}, K_m and concentration of substrate ## PRACTICE: - 1. If an enzyme is determined to have a low K_m what does that say about the reaction? - a. The enzyme binds loosely to the substrate - b. That the speed of the reaction is slow - c. The enzyme binds tightly to the substrate - d. That the speed of the reaction is fast - 2. Which of the following terms describes how rapidly a substrate can undergo a reaction? a. Kinetics - b. Turnover Number - c. Saturation Rate - d. Reaction Speed