CONCEPT: ENZYME KINETICS

- Enzyme **kinetics** measure the activity of an enzyme
 - □ Measures ______ between substrate concentration and speed of enzyme reactions
 - Low substrate concentrations: less collision between enzyme and substrate = substrate is rate limiting
 - High substrate concentrations: more collision between enzyme and substrate = enzyme is rate limiting
 - □ It should be measured before any product has been formed

EXAMPLE: Collisions between substrate and enzyme happen when there is a higher substrate concentration

Representations of Enzymes Kinetics

- V_{max} and K_m (*Michaelis constant*) are measures of enzyme ______
 - \Box V_{max} measures the maximum velocity (speed) of the enzymes reaction
 - Occurs as the substrate concentration is **saturated** which is when its reached it's upper limit of reactivity
 - High substrate concentrations: more collision between enzyme and substrate = enzyme is rate limiting
 - \Box K_m measures the enzyme's function by determining the concentration of substrate needed to work half V_{max}
 - Small K_m enzyme binds tightly, Large K_m the enzyme binds weakly
 - □ Can be used to calculate the **turnover number** which is how rapidly a substrate molecule can undergo a reaction

EXAMPLE: Graph demonstrating relationship between V_{max}, K_m and concentration of substrate

PRACTICE:

- 1. If an enzyme is determined to have a low K_m what does that say about the reaction?
 - a. The enzyme binds loosely to the substrate
 - b. That the speed of the reaction is slow
 - c. The enzyme binds tightly to the substrate
 - d. That the speed of the reaction is fast

- 2. Which of the following terms describes how rapidly a substrate can undergo a reaction?
 a. Kinetics

 - b. Turnover Number
 - c. Saturation Rate
 - d. Reaction Speed