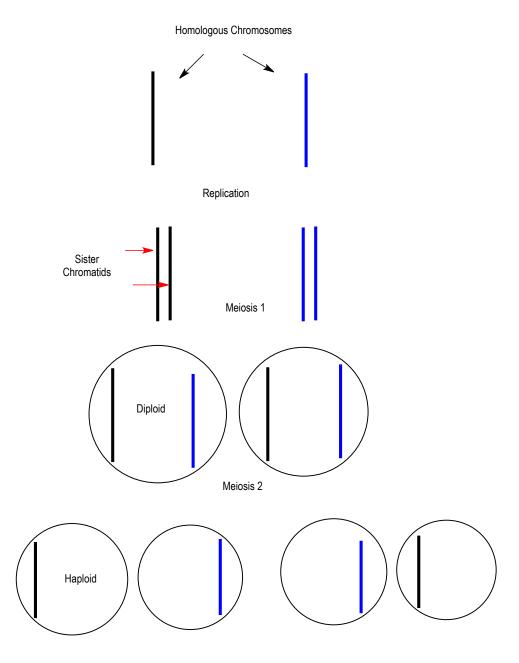

CONCEPT: MEIOSIS

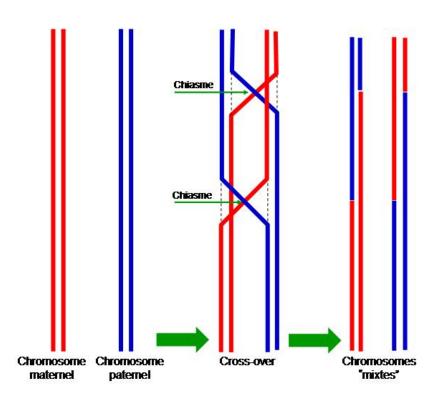
Overview

			/ 11 \ (1 \ (
•	Meiosis is the process	of creating germ cell	s (sex cells) that are	used to

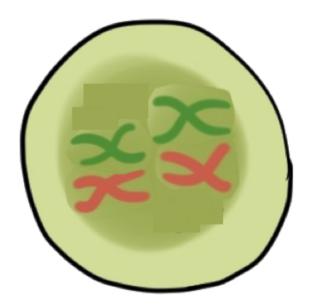

- □ **Meiosis I** involves replicating the DNA and creating two cells containing a single set of chromosomes
- □ **Meiosis II** involves dividing the two cells into four cells with a single set of sister chromatids

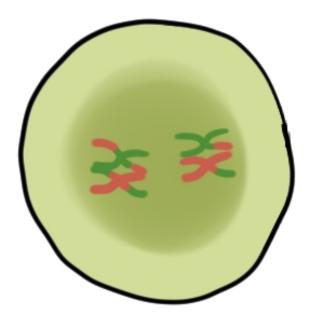
EXAMPLE: Overview of meiosis

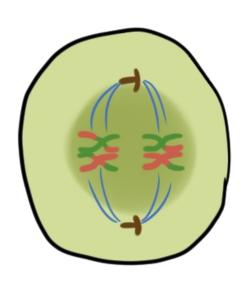
- Meiotic DNA duplication results in a lot of different chromosome
 - □ **Sister chromatids** are two copies (one pair) of each duplicated chromosome
 - Separate during Meiosis II
 - □ **Homologous chromosomes** are two copies (maternal and paternal) of both sister chromatids
 - **Bivalent** is when the four sister chromatids stick together
 - Separate during Meiosis I
 - □ Haploid(n) cells have only ½ the chromosomes of a diploid(2n) cell which have two copies of a chromosome

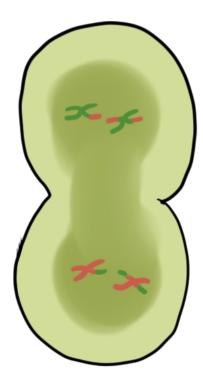

EXAMPLE:

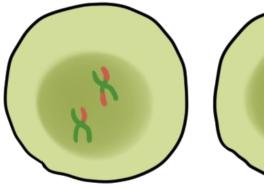
Genetic Variation

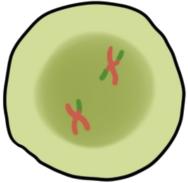

- In meiosis, DNA is reorganized and ______ to produce genetically distinct offspring
 - □ **Homologous recombination** exchanges similar DNA sequences between chromosomes
 - DNA-repair uses identical DNA sequence from sister chromatid to repair DNA
 - *Meiosis* uses non-identical DNA sequences from non-sister chromatids in the bivalent
 - □ Crossing over is when maternal and paternal homologs physically swap chromosomal segments
 - Chiasma/Chaismata hold bivalents together where cross over events occur
 - Chiasmata are extremely important in keeping the bivalents together during meiosis
 - □ **Reassortment** is the random division of chromosomes into the cells
 - As chromosomes line up in metaphase, they randomly assort to one side or the other and go into that cell
 - **Nondisjunction** occurs when homologs ______ to separate
 - Causes **aneuoploidy** which are eggs with wrong number of chromosomes (down syndrome)

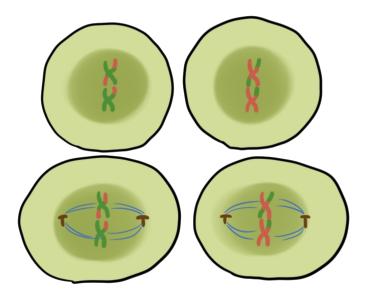

EXAMPLE: Chiasmata during crossing over


Meiosis I Steps

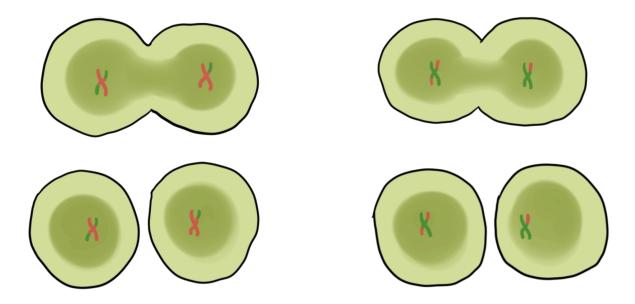

- Meiosis I uses 4 steps to go through the first round of division
 - 1. Prophase I is a long, complex phase with four stages that occurs after DNA replication
 - a. Leptotene Condensation of chromatin fibers
 - b. Zygotene More condensation and homologous chromosomes are paired (form bivalents)
 - c. Pachytene Crossing over occurs
 - d. Diplotene Pausing phase where chromosomes decondense a bit, but are still attached by chaisamata
 - e. Diakinesis Chromosomes recondense, nuclear envelop break down, spindle forms



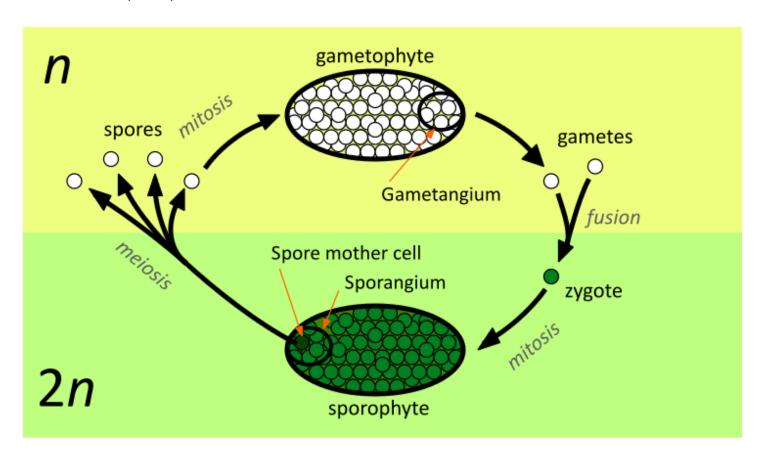

- 2. **Metaphase I** is when bivalents align at spindle equator
 - Chaismata keep homologous chromosomes together
- 3. **Anaphase I** is when homologous chromosomes move to opposite poles



- 4. **Telophase I** and **Cytokinesis** is when two cells are produced
 - These cells contain a single set of randomly sorted chromosomes (two sister chromatids)
 - These cells are haploid (haploid set of chromosomes)



- Meiosis II uses 4 steps to go through the second round of division
 - 1. **Prophase II** is a short, almost nonexistent phase occurs immediately after cytokinesis (NO DNA replication)
 - 2. Metaphase II is when the chromosomes line up at equator


- 3. Anaphase II is when each sister chromatid is pulled towards opposite poles
- 4. Telophase II and Cytokinesis is when two cells are produced
 - These cells contain a set of sister chromatids
 - These cells are referred to as haploid (n)

Mitosis and Animal Life Stages

- Animals are classified into three _____ based on when in their life cycle they perform meiosis
 - 1. **Gametic/terminal meiosis** are organisms that use meiosis to produce haploid **gametes** (sex cells)
 - Most living organisms (including humans)
 - Meiosis is completed after fertilization (which forms a diploid cell)
 - 2. **Zygotic/Initial meiosis** are organisms that use meiosis after fertilization
 - Uses meiosis to produce haploid spores
 - Diploid cells are only used as gametes
 - 3. **Sporic/Intermediate meiosis** are organisms where meiosis occurrence has nothing to do with gamete formation
 - **Sporophyte** are diploid zygotes that undergo mitosis
 - Sporogenesis occurs through meiosis which produces gametophytes
 - Gamteophyes are used to produce gametes through mitosis

EXAMPLE: Example of sporic/intermediate meiosis

PRACTICE:

- 1. In which of the following phases does crossing over occur?
 - a. Metaphase I
 - b. Prophase I
 - c. Anaphase II
 - d. Prophase II

- 2. In which of the following steps of prophase I does crossing over occur?
 - a. Leptoene
 - b. Zygotene
 - c. Pachytene
 - d. Diplotene
 - e. Diakinesis

3.	True or False: The cells produced from meiosis I and meiosis II are both haploid? a. True b. False
4.	Fill in the blanks. In anaphase I the separate, while in anaphase II the separate. a. Sister chromatids, homologous chromosomes b. Homologous chromosomes, sister chromatids c. Homologous chromosomes, Homologous chromosomes d. sister chromatids, sister chromatids

- 5. Which of the following life cycles uses meiosis after fertilization?
 a. Gametic meiosis
 b. Zygotic meiosis
 c. Sporic meiosis