CONCEPT: PROTEIN BINDING

Protein Binding

- All proteins bind to other ______
 - ☐ The *binding site* is the region where proteins bind
 - It is highly **specific** and can usually only bind to one or a few particles
 - The **ligand** is any substance bound to a protein
 - Affinity measures the strength of protein binding
 - □ Noncovalent bonds between amino acids in the binding site allow for the ligand to bind to the protein
 - Also called *molecular complementarity* when binding site and ligand properties are complementary
 - □ Surface conformation of the protein binding site provides it a certain _____
 - Can restrict the ligand's access to water and prevent the formation of hydrogen bonds
 - Allow for reactions between ligands and polar amino acid side chains

EXAMPLE: Extracellular ligand binding to a protein in the membrane bilayer

Ther	e are forms of protein binding
	$\ \ \Box \textit{ Surface-String} . \ \text{One large protein surface interacts with polypeptide chain of another protein (string)}$
	□ Helix-Helix: Two polypeptide helices interact
	□ Surface-Surface: Two protein surfaces interact – most common form of protein interaction

□ *Molecular channels*: One protein forms a channel containing an active site on the inside

- Allows for processing of an unstable intermediate protein quickly without it diffusing into cytosol

□ Small Molecule: Nonprotein binding of a small molecule that gives the protein a specific function

EXAMPLE: The small molecule retinol (grey) bound to the human rhodopsin protein

Antibodies

Antibodies are	proteins	(also called	limmunog	globulin	proteins)	produced b	y the immune	system
----------------------------------	----------	--------------	----------	----------	-----------	------------	--------------	--------

- □ Antibodies help the body _____ and respond to foreign molecules
 - Recognize an **antigen**, which is any foreign molecule VERY specific
 - Antibodies recognize an antigen's **epitope** or small specific region that the antibody binds
- □ Antibodies are shaped like a "Y" with a heavy and light chain segment
 - There are variable regions that recognize specific antigens, and constant regions specific to antibodies
- □ Antibodies are extremely _____. They can tell the difference between a single amino acid

EXAMPLE: An antibody structure is specific for one antigen

Enzymes

- Enzymes are proteins that help to ______ (speed up) reactions
 - $\ \square$ Enzymes bind to **substrates**, which are ligands that bind to enzymes
 - Binds to the active site portion of the enzyme
 - □ Once bound the enzyme stabilizes the *transition state* to lower activation energy
 - Chemical reaction or modification proceeds
 - □ Many pharmaceutical drugs inhibit enzymes

EXAMPLE: Enzymes bind to substrates to catalyze chemical reactions

PRACTICE

- 1. Which of the following is not a form of protein binding?
 - a. Helix-helix
 - b. Surface-stringc. Surface-surface

 - d. Surface-helix

- The region of a molecule that an antibody binds is called what?
 a. Antigen
 b. Epitope

 - c. Ligand
 - d. Substrate

- 3. True or False: The binding site of a protein is highly specific for one or a few ligands a. True

 - b. False