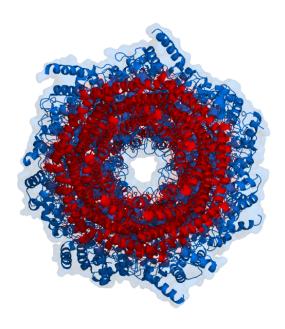
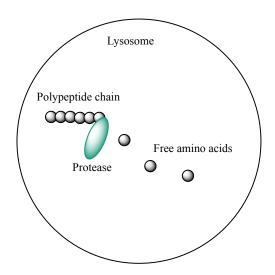

CONCEPT: PROTEIN DEGREDATION

Ubiquitin-Proteasome Pathways

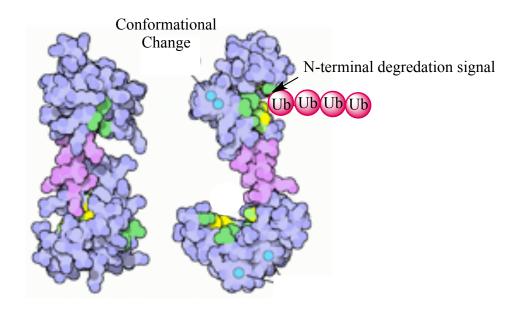

- The **proteasome** is a multisubunit protein complex that is able to ______ proteins
 - □ Proteins labeled with **ubiquitin** protein are targeted to the proteasome
 - Ubiquitin is a 76 amino acid protein conserved across all eukaryotic organisms
 - Proteins can be labeled with one (mono) or more than one (poly) ubiquitin proteins
 - □ This pathway occurs in steps and requires energy from ATP
 - 1. Ubiquitin is activated by the E1 ubiquitin activation enzyme
 - 2. Activated ubiquitin then binds to the E2 ubiquitin conjugating enzyme

- 3. Then this complex is attached onto the target protein via E3 ubiquitin ligase
 - Each E3 recognizes a different substrate protein it "selects" the correct protein
- 4. The ubiquitinated protein is recognized by the outside of the proteasome
- 5. The protein is unfolded and fed through the inside of the cylindrical proteasome
 - Contains ATP-dependent **proteases** which chop up the protein into short peptides
 - The entire protein is bound until it is entirely cut


EXAMPLE: Proteasome structure

Lysosomal Pathway

- The **lysosome** breaks down proteins
 - □ The lumen of the lysosome contains _____ that chop up proteins
 - □ Autophagy is the process of cell death, and involves a lot of protein destruction via lysosomes
 - □ Can rapidly respond to nutrients and external signals


EXAMPLE: Lysosomal protein degradation

Degradation Regulation

- Protein degradation _____ the amount of protein in the cell at a certain time
 - □ One reason for regulation is that a protein's lifespan can vary from seconds to decades
 - Proper proteins levels are crucial for certain chemical reactions
 - An **N-terminal degradation signal** is a hidden signal released when its time for degradation
 - Ubiquitin binds this region
 - □ A second reason for regulation is proteins occasionally _____
 - Abnormally folded proteins can form aggregates in the cell and cause disease

EXAMPLE: A conformational change releases an N-terminal degradation signal which becomes ubiquitinated

PRACTICE

- 1. Which of the following is not associated with protein degradation?
 - a. Ubiquitin-proteasome pathway
 - b. Lysosomal pathway
 - c. 5' Cap
 - d. N-terminal degradation signal

- 2. Which protein is responsible for attaching a ubiquitin molecule onto a protein to target it for degradation?
 - a. E1 ubiquitin activation enzyme
 - b. E2 ubiquitin conjugating enzyme
 - c. E3 ubiquitin ligase
 - d. E4 ubiquitin attachase

3.	a.	False: True False	Before entering the proteasome the protein marked for degradation is unfolded.

- 4. What is the name of the signal released by some proteins when they can be degraded?
 a. Ubiquitin binding signal
 b. N-terminal degradation signal
 c. C-terminal degradation signal
 d. Proteosome signal