CONCEPT: INTERMEDIATE FILAMENTS

- Intermediate filaments are cellular components that provide the cell with great ______ strength
 - □ Intermediate filaments are the most durable cytoskeletal filaments
 - They allow the cell to withstand mechanical stress
 - Strength provided by long intermediate filament strands that are wrapped together (like a rope)
 - □ Intermediate filaments are anchored to the plasma membrane and the _____
 - □ Intermediate filaments are formed by:
 - Individual subunits that link together to form one filament
 - Two filaments form dimers by binding via the alpha helical domain on the individual subunits
 - Two dimer sets arrange themselves in opposite directions (anti-parallel) to form tetramers
 - Two ends are the same
 - □ Lack of or mutated forms of intermediate filaments can cause severe diseases
 - Ex: ALS, progeria

EXAMPLE: Intermediate Filaments

• There are four classes of intermediate filaments

Classes	Function
Keratin	Distributes stress in epithelial cells (like skin)
Vimentin and Vimentin-related	Forms network from nucleus into the cell periphery
Neurofilaments	Support the structure of the neuron
Nuclear lamins	Support nucleus; disassociate and re-form during cell division

PRACTICE:

- 1. Which of the following is not a class of intermediate filaments?
 - a. Nuclear lamins
 - b. Neurofilaments
 - c. Vimentin
 - d. Integrins

- 2. Two intermediate filament dimers are arranged in which of the following ways to create a tetramer?
 a. Parallel

 - b. Anti-parallelc. End-to-End