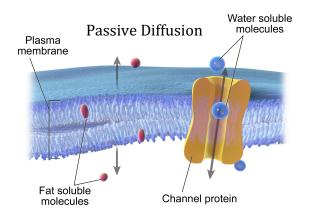
CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT

Membranes and Gradients

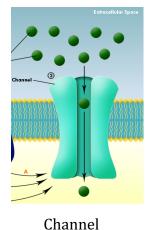
- Cells must be able to communicate across their membrane barriers to exchange materials with the environment
 - □ Membranes are **semi-permeable** and only allow certain molecules to cross
 - Small nonpolar molecules (oxygen, carbon dioxide) can rapidly cross
 - Uncharged polar molecules can pass if small, but cannot if large
 - Charged molecules and ions cannot pass
 - □ Cell membranes allow for internal cellular concentrations to vary from external concentrations
 - **Concentration gradients**: Concentrations of molecules differ on either side of a membrane
 - **Electrical potentials**: Net charge of environment differ on either side of a membrane
 - **Electrochemical potential**: Combined effect of concentration gradient and electrical potential
 - **Membrane potential:** Difference between the concentration gradient and electrical potential
 - ☐ The overall net charge must be balanced

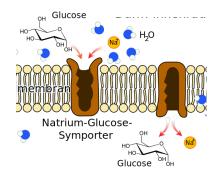

EXAMPLE: Concentration and electrical gradients across a membrane

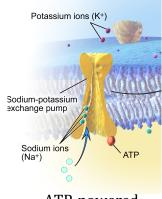
Passive and Active Transport

- Molecules cross the membrane barrier through two ways: passive transport and active transport
 - □ **Passive transport** moves molecules with a gradient (high concentration to an area of low concentration)
 - Simple diffusion can occur if the molecule needs no assistance in passing the membrane

- Facilitated diffusion occurs if the molecule needs assistance in crossing the membrane
- Diffusion requires no energy input
- □ **Active transport** moves molecules against a gradient (from low concentration to high concentration
 - Active transport requires energy usually from ATP hydrolysis


EXAMPLE: Simple vs. Facilitated diffusion




Facilitated Diffusion

- Three classes of transmembrane proteins transport molecules across the membrane
 - □ **Channels** provide a portal for molecules to pass
 - Only let molecules of specific size or electrical charge pass the membrane
 - □ **Transporters** are highly selective in allowing molecules to pass
 - Transfer only molecules that fit into specific binding sites
 - □ **ATP powered pumps** require energy from ATP to transport molecules

EXAMPLE: Examples of the three classes of transmembrane proteins

Transporter

ATP-powered pump