CONCEPT: PROTEIN BASICS

Protein Structures

- Proteins are made by _____ amino acids
 - □ A **polypeptide chain** is formed by *peptide bonds* between amino acids
 - A multimeric protein is made up of multiple polypeptide chains, each called a subunit
 - A **monomeric** protein is made up of a single polypeptide.
 - ☐ The **polypeptide backbone** is formed with a repeating sequence of Nitrogen and Carbon atoms (-N-C-C-)
 - The **N-terminus** contains an amino group (NH₃) at it's end
 - The **C-terminus** contains a carboxyl group (COOH) at its end

EXAMPLE: A three amino acid polypeptide chain with N and C termini

Amino Acids

- Each amino acid in a polypeptide chain has unique properties
 - □ All amino acids have the same carboxyl group, an amino group, and hydrogen
 - □ The **R group** is a side chain that differs between amino acids and gives them ______ properties
 - The *polar, charged* group can form ionic bonds with other charged molecules in the cell
 - The *polar, uncharged* group can form hydrogen bonds with other molecules including water
 - The *nonpolar* group cannot interact with water
 - The other group consists of three amino acids, each with unique properties that do not fit into other groups
 - \Box Amino acids exist as **stereoisomers** because the four groups are asymmetrically arranged around the α -carbon
 - Two forms D- and L-; BUT the L forms is used in proteins

EXAMPLE: A model of the structure of each amino acid

EXAMPLE: The 20 amino acid structures, classified by group

Self-Assembly and Protein Folding

- Proteins form into _____ shapes
 - □ Most proteins are capable of **self-assembly**, meaning they can fold into their shape without assistance
 - Information required to specific the folding is inherent in the amino acid side chains (R group)
 - If the protein is **denatured** (unfolded) in one condition it will **renature** (reform) in proper conditions
 - ☐ The peptide bonds in the polypeptide backbone movement
 - First limit on protein folding

EXAMPLE: Example of denatured and renatured forms of a protein

- ☐ The protein's **conformation** (folded shape) is determined through the properties of the amino acid R group
 - This forms with conformation with the _____ Gibbs free energy
 - The **native state** of a protein specifies a small number of conformations the protein will actually form
 - Out of 1000s of possibilities
- ☐ The protein's **conformation** (folded shape) is formed through noncovalent interactions
 - Hydrogen bonds, Ionic bonds, Van der Waals interactions, and hydrophobic interactions
- □ **Disulfide bonds** are stabilizing covalent bonds formed between sulfur atoms on two cysteine amino acids

EXAMPLE: Protein conformation is dictated by amino acid side chains

- Chaperone proteins are proteins that can _____ in protein folding
 - □ One group is the **molecular chaperones** that assist in stabilizing unfolded or partially folded proteins
 - Bind to short segments of the protein substrate
 - Prevent aggregation of unfolded, or misfolded proteins
 - Hsp70 is an example
 - ☐ The second group is the **chaperonins**, which form small folding chambers to sequester unfolded proteins
 - The sequestering allows the protein to refold without influence from molecules or water in cytosol
 - Contain a cylindrical folding core, and regulated by protein "lids" that allow proteins in and out
 - Hsp60 is an example
 - □ Chaperones _____ proteins from energy provided by ATP hydrolysis
 - ☐ Misfolded proteins results in diseases like Parkinson's, and Alzheimer's

EXAMPLE: Structure of a chaperonin

Four Protein Models

- There are four ways to present a protein's structure
 - ☐ The **backbone** model presents the overall organization of the polypeptide chain
 - ☐ The **ribbon** model shows the polypeptide backbone folding
 - ☐ The **wire** model shows the polypeptide backbone and the amino acid side chains
 - ☐ The **space-filling** model shows a contour map of the protein's surface

EXAMPLE: Four models of protein folding

PRACTICE

- 1. Which of the following is false about the R group of amino acids?
 - a. They give polypeptide chains unique properties
 - b. They assist in forming complex protein structures
 - c. They control the stereoisomer form of the amino acid
 - d. They can be nonpolar

- 2. A protein C-terminus is named that way because it contains what molecule?
 - a. An extra carbon
 - b. A COOH group
 - c. A CH₃ group
 - d. A Chloride

3.	A protein's conformation is formed through all but which of the following? a. Hydrophobic Interactions b. Disulfide bonds c. Covalent bonds between carbons d. Noncovalent bonds between R groups
4.	Which of the following protein models would you use if you wanted to gain an idea of what the surface of a protein looked like? a. Backbone b. Ribbon c. Wire d. Space-Filing