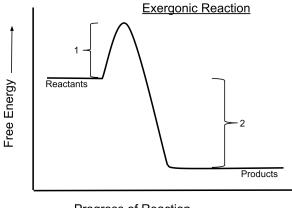
CONCEPT: ENZYMES

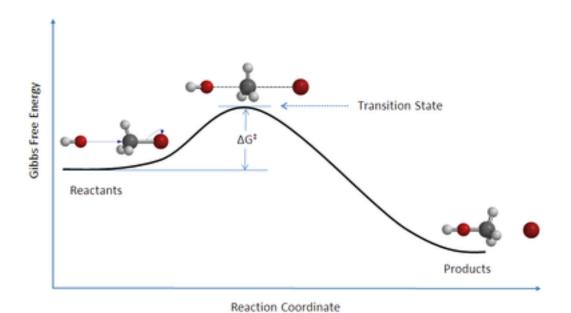
Enzyme Basics

- Enzymes are protein or RNA molecules (*ribozymes*) that reduce the energy necessary for a reaction to occur
 - □ Enzymes act on a **substrate** in a highly _____ manner
 - Enzymes catalyze (increase the rate of) chemical reactions of the substrate
 - Make reactions 108–1013 times faster which = taking 1 second to complete a 3 300,000-year reaction
 - □ Enzymes catalyze the forward and reverse reactions
 - □ Enzymes must meet three main conditions
 - They cannot be consumed by the reaction
 - They cannot be changed by the reaction
 - They only effect the rate of the reaction and do not effect the free energy of the reaction


EXAMPLE: Enzyme substrate complex

Enzymes Speed Up Reactions

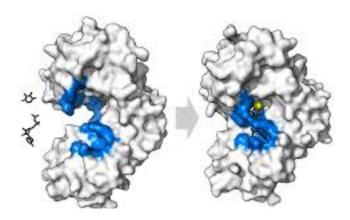
- Enzymes overcome activation energy (E_a) = minimum amount of energy reactants must have before becoming products
 - \Box Thermodynamically favorable reactions (Δ G<0) don't always occur in cells they need an energy ______
 - **Metastable state** molecules are thermodynamically unstable, but cannot react (Too high E_a)


EXAMPLE: Activation energy (1) shown on an energy diagram

Progress of Reaction -

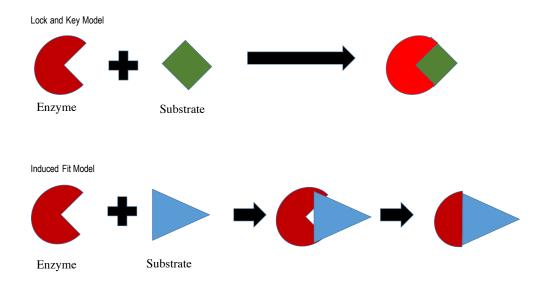
- □ Two potential ways of ______ activation energy
 - Bad: Increase in heat will increase kinetic (and therefore activation) energy but we will all overheat
 - **Good:** Use of an enzyme that lowers activation energy
- □ Enzymes bind to the **transition state** form of the reactant, which has the highest free energy
 - This binding stabilizes the transition state, and allows the reaction to overcome the Ea and occur

EXAMPLE: A Gibbs free energy graph demonstrating the transition state form

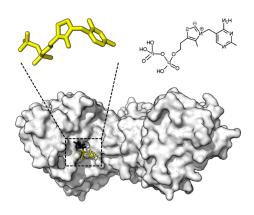

Reaction: $HO^- + CH_3Br \rightarrow [HO--CH_3--Br]^{\dagger} \rightarrow CH_3OH + Br$

Specific Enzyme-Substrate Interactions

- Enzyme and substrate _____ regulate the reaction
 - □ **Diffusion** is the passive movement of substrates throughout the cytoplasm
 - An average molecules take 1/15th of a second to travel 10μm distance (average cell diameter =15μm)
 - Enzymes get hit by about 500,000 random collisions each second
 - Enzymes can catalyze 1000s of substrate reactions each second

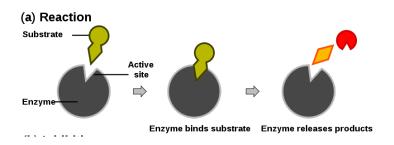

- ☐ An **active site** is groove in which the substrate binds to the enzyme and the reaction takes place
 - Usually has complementarity to the substrate's shape and charge and interacts by noncovalent bonds
 - Buried in the enzyme to separate from aqueous environment

EXAMPLE: Substrates bind to the enzymes active site (blue)


- Can bind directly (lock and key model) or by inducing a change in the substrate (induced fit model)

EXAMPLE: Comparison of two models of enzyme-substrate interactions

- □ Enzymes also contain molecules like **cofactors** (inorganic) or **coenzymes** (organic) to facilitate the reaction
 - Also called **prosthetic groups**


EXAMPLE: A cofactor (yellow) aids in an enzyme facilitated reaction

Enzyme Regulation

- Enzyme catalysis is highly _______
 - □ **Feedback inhibition** is when a product of one metabolic pathway inhibits enzyme involved in its synthesis
 - □ **Allosteric** regulation occurs when a small molecule binds to a regulatory site on the enzyme
 - Can change the shape or structure of the enzyme and/or active site
 - □ **Phosphorylation** (addition of phosphate group) can inhibit or activate enzymatic activity

EXAMPLE: Inhibitors compete with substrate for active site binding

Practice

- 1. Which of the following is not one of the three major conditions of enzymes?
 - a. Enzymes cannot be consumed by a reaction
 - b. Enzymes cannot be changed by a reaction
 - c. Enzymes do not effect the rate of the reaction, only the free energy
 - d. Enzymes do not effect the free energy of the reaction, only the reaction rate