CONCEPT: VIRUSES, VIROIDS, AND PRIONS

<u>Viruses</u>

- - □ Viruses are extremely small containing a range of 4-200 proteins
 - ☐ A **capsid**, or protein coat, encloses their genetic material (DNA or RNA)
 - An **envelope** made up of a phospholipid bilayer, surrounds some viral capsids
 - Two main shapes, **Helical** and **Icosahedron**, can describe viral structure
 - Does not contain any organelles or cytoplasm, and only a few proteins
 - □ Viruses cause many diseases in plants and animals, and are typically named after the disease they cause
 - □ Viruses are not _____ as they cannot reproduce independently and do not have metabolic pathways
 - Instead, viruses infect host cells and redirect the host's machinery for virus replication
 - □ Viruses evolved to infect very specific hosts
 - Bacteriophages infect only bacteria hosts

EXAMPLE: Basic structure of a virus particle

- Viruses have two main life cycles
 - □ The Lytic Cycle is responsible for creating ______ viral particles
 - Absorption: Virus binds with cell receptors; enveloped viruses are endocytosed
 - Penetration: Viruses crosses the plasma membrane
 - Replication: Viral genes are replicated
 - Assembly: The capsid and genome form into a virus particle
 - Release: Virus particles are released, lysing the cell; enveloped viruses **bud** from the cell
 - □ During the Lysogenic Cycle the virus integrates its ______ into the host genome
 - A **prophage** (provirus) is the term for the integrated DNA
 - In bacteria the prophage is released upon DNA damage and can be replicated to create viral particles
 - Virions, or new viral particles, are continually created by the provirus in some eukaryotic cells
 - In some eukaryotic cells the provirus can cause cancer by restricting control over cell division/growth

EXAMPLE: Arrow diagram showing the steps of the lytic and lysogenic cycles

Viruses and Research

- Viruses are used by scientists to study cell biology and cancer
 - □ Plaque assays are used to calculate the amount of virus in a sample

EXAMPLE: A plaque assay output

- □ **Retroviruses** are enveloped _____ viruses that incorporate their genome into the host cell chromosomes
 - The RNA undergoes **reverse transcription** to create two identical DNA strands
 - This DNA is integrated into the host chromosome (provirus)
 - The viral gene is expressed through host cell transcription and translation
 - Scientists use retroviruses to express genes of interest into cells

Viroids and Prions

• Viroids and Prions are two other types of nonliving infectious particles	
□ Viroids are small circular infectious	_ molecules found in plant cells

- They can be transferred between damaged plant cells
- They interfere with proper plant gene expression
- □ **Prions** are infectious particles made from abnormally folded cellular ______
 - Mainly cause neurological diseases (ex. Mad Cow Disease)
 - Not destroyed by cooking

EXAMPLE: Basic viroid structure

PRACTICE:

- 1. Which of the following is true?

 - a. Viruses, viroids, and prions are all living infectious agents
 b. Viroids have two main life cycles: the lytic and lysogenic cycle
 c. Viruses have two main shapes: icosahedron and circular

 - d. Viruses, viroids, and prions are all non-living infectious agents

2.	During which life cycle is the virus making more copies of itself? a. Lytic Cycle b. Lysogenic Cycle
3.	True or False: Retroviruses are able to integrate their genome into the host cell? a. True b. False