CONCEPT: TARGETING PROTEINS TO THE MITOCHONDRIA AND CHLOROPLASTS

- Proteins entering into the mitochondria and chloroplast have _____ sequences that direct them to the organelle
 - □ A chaperone protein (Hsc/Hsp70) carries the protein to the organelle
 - ATP hydrolysis removes the protein so it can pass through the TOM protein
 - □ The **TOM** (**TOC** for chloroplast) protein complex on the outer membrane recognizes a signal sequence
 - The protein is unfolded and led into the intermembrane space
 - □ The **TIM** (**TIC** for chloroplast) protein complex on the inner membrane recognizes a second signal sequence
 - A H+ gradient drives the passage of the protein through the TIM complex
 - proteins within the organelle bind and help it refold

EXAMPLE: Protein feeding through the TOM/TIM complexes to enter the mitochondria

- Proteins are directed to many _____ within the organelles
 - ☐ There are many sub compartments within the mitochondria and chloroplasts
 - Signal sequences direct the protein to each compartments
 - □ Some proteins need to insert into various organelle membranes
 - Inserts the same way as other transmembrane proteins

EXAMPLE: Insertion into a thylakoid membrane

PRACTICE:

- 1. True or False: Proteins must remain intact in order to cross the membrane and enter the mitochondria or chloroplast?
 - a. True
 - b. False

- The energy to insert proteins through the TIM/TIC complex comes from what reaction?
 a. ATP hydrolysis
 b. H+ gradient
 c. GTP hydrolysis
 d. Ca²⁺ influx into the mitochondria or chloroplast