CONCEPT: ELECTRON TRANSPORT CHAIN

Overview

•	The electron transport chair	n uses energy from	n activated carriers t	to drive the creation	of an H+ gradient for ATP s	synthesis

- ☐ The first stage of oxidative phosphorylation is the electron transport chain
- □ The electron transport chain is embedded in the _____ mitochondrial membrane
- □ NADH and FADH₂ are the two activated carriers that donate electrons to the electron transport chain
 - They are oxidized to NAD+ and FAD
- □ Stepwise movement of high energy electrons through protein complexes allows for energy capture and transfer
 - The last electron acceptor is O₂ which forms ______

EXAMPLE: Overview of the electron transport chain

Steps

- from NADH and FADH₂ are fed through the four complexes of the electron transport chain
 - □ **NADH dehydrogenase** transfers electrons to **ubiquinone** (coenzyme Q), a hydrophobic e⁻ carrier in lipid bilayer)
 - Contains **iron-sulfur centers** which are iron-sulfur linkages which can accept or donate electrons
 - Moves four H+ into the intermembrane space
 - □ **Succinate dehydrogenase** transfers low-energy electrons from succinate to FAD then to ubiquinone
 - Contains iron-sulfur centers
 - Does not move H+ across membranes

EXAMPLE: First two steps to the electron transport chain

- □ Cytochrome bc₁ catalyzes the transfer of electrons from ubiquinol (reduced form of ubiquinone) to cytochrome C (electron carrier in the intermembrane space)
 - Contains heme groups which bind iron and undergo iron oxidation to allow for accepting/donating e-
 - Moves four H⁺ into the intermembrane space (sometimes called the **Q cycle**)
 - Can also be called the CoQH₂ -cytochrome c reductase
- □ **Cytochrome C oxidase** transfers electrons to O₂ (Consumes the majority of the air we breathe)
 - Contains a **copper center** (core of cooper atoms that accept/donate electrons) and a heme group
 - After accepting two electrons, it binds O₂ tightly, breaks the double bond, and each O accepts a pair of e⁻
 - For each Oxygen there are 2 H⁺ moved into the intermembrane space and 2 H⁺ used to create H₂O

EXAMPLE: Last two steps to the electron transport chain

EXAMPLE: The entire electron transport chain

Reduction Potentials

- Each complex in the electron transport chain has a redox potential (E°) which measures the affinity of electrons in Volts
 - ☐ **High electrons-transfer potential:** Strong reducing agents (V<0, ex: NADH)
 - □ Low electron-transfer potential: Strong oxidizing agents (V>0 ex: Oxygen)
 - □ The electron transport chain is arranged in order of ______ reduction potentials
 - NADH \rightarrow NAD+ + H+ = -320mV
 - $-2 H^{+} + \frac{1}{2} O_{2} + 2e^{-} \rightarrow H_{2}O = 816 \text{mV}$

EXAMPLE: Increase of redox potentials down the ETC

PRACTICE

- 1. Which of the following is not a complex of the electron transport chain?
 - a. NADH dehydrogenase
 - b. Succinate dehydrogenase
 - c. Cytochrome C oxidase
 - d. ATP dephosphorylase

- 2. Which of the following is the correct order of electrons through the electron chain?
 - a. NADH dehydrogenase → succinate dehydrogenase → Cytochrome oxidase → Cytochrome bc₁
 - b. succinate dehydrogenase → NADH dehydrogenase → Cytochrome oxidase → Cytochrome bc₁
 - c. NADH dehydrogenase \rightarrow succinate dehydrogenase \rightarrow Cytochrome bc₁ \rightarrow Cytochrome oxidase
 - d. Cytochrome $bc_1 \rightarrow succinate dehydrogenase \rightarrow Cytochrome oxidase \rightarrow NADH dehydrogenase$

3.	Which of the following molecules is the last to accept electrons from the electron transport chain? a. CO ₂ b. Oxygen c. NAD ⁺ d. FAD
4.	True or False: The reduction potentials of the complexes in the electron transport chain are ordered from low to high. a. True b. False