TOPIC: POWERS OF i - Recall: $i = \sqrt{-1}$. Many problems will have i raised to the 2^{nd} , 3^{rd} , or even much higher powers! - All properties of exponents can be applied to powers of i ■ Any power of i can ALWAYS be simplified to ____, ___, or ___ ## How To Evaluate Higher Powers of i • We can express powers of *i* in terms of _____. EXAMPLE: Simplify the power of i. $$i^{20} = i^{4} \cdot i^{4} \cdot i^{4} \cdot i^{4} \cdot i^{4}$$ $$= 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$$ $$i^{22} = i^{4} \cdot i^{4} \cdot i^{4} \cdot i^{4} \cdot i^{4} \cdot i^{2}$$ $$=$$ • To evaluate i raised to a very high power, here's a shortcut: EXAMPLE: Simplify the power of i. (A) i^{100} (B) i^{22} (C) i^{67} ## $\underline{\mathsf{TOPIC} \colon \mathsf{POWERS} \; \mathsf{OF} \; \mathit{i}}$ $\underline{\mathsf{PRACTICE}}\text{: Simplify the power of } i.$ i^{1003} ## Remainders of i $i^1 = i$ $i^2 = -1$ $i^3 = -i$ PRACTICE: Simplify the power of i. i^{85}