TOPIC: POWERS OF i

- Recall: $i = \sqrt{-1}$. Many problems will have i raised to the 2^{nd} , 3^{rd} , or even much higher powers!
 - All properties of exponents can be applied to powers of i

■ Any power of i can ALWAYS be simplified to ____, ___, or ___

How To Evaluate Higher Powers of i

• We can express powers of *i* in terms of _____.

EXAMPLE: Simplify the power of i.

$$i^{20} = i^{4} \cdot i^{4} \cdot i^{4} \cdot i^{4} \cdot i^{4}$$
$$= 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$$

$$i^{22} = i^{4} \cdot i^{4} \cdot i^{4} \cdot i^{4} \cdot i^{4} \cdot i^{2}$$

$$=$$

• To evaluate i raised to a very high power, here's a shortcut:

EXAMPLE: Simplify the power of i.

(A) i^{100}

(B) i^{22}

(C) i^{67}

$\underline{\mathsf{TOPIC} \colon \mathsf{POWERS} \; \mathsf{OF} \; \mathit{i}}$

 $\underline{\mathsf{PRACTICE}}\text{: Simplify the power of } i.$

 i^{1003}

Remainders of i $i^1 = i$ $i^2 = -1$ $i^3 = -i$

PRACTICE: Simplify the power of i.

 i^{85}