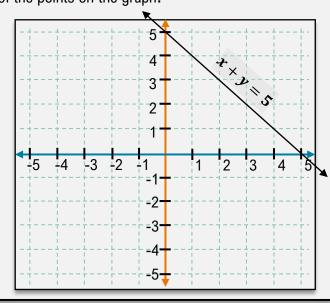
Solving Two Variable Equations


• Instead of just ONE variable, many equations in this course will involve TWO variables: ____ & ____

Equations with ONE Variable x + 2 = 5 x = 3 x = ? y = ? x = ? y = ? x = ? y = ? x = ? y = ? x = ? y =

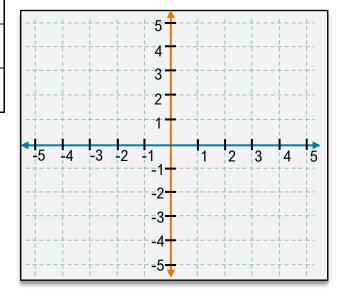
- If asked to determine if points (x, y) "satisfy" an equation, x & y values to check if equation is true.
 - The **graph** of an equation is just a visual representation of all (x, y) which make equation true.

When points **DO** satisfy an equation, they [**ARE | ARE NOT**] on the graph of that equation. When points **DO NOT** satisfy an equation, they [**ARE | ARE NOT**] on the graph of that equation.

EXAMPLE: The graph of the equation x + y = 5 is a line, as shown in the diagram below. a) Determine if the points (3,2), (4,1), (0,0), & (-1,3) satisfy the equation. b) Plot each of the points on the graph.

Graphing Two Variable Equations by Plotting Points

• To graph an equation, calculate & plot ______ that make the equation true.

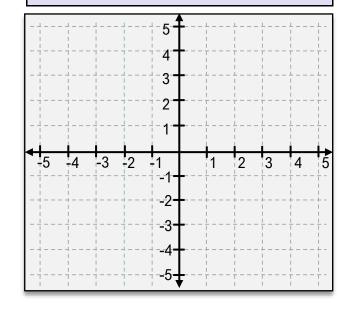

EXAMPLE: Graph the equation -2x + y = -1 by creating ordered pairs using x = -2, -1, 0, 1, 2.

x	у	Ordered pair (x, y)
-2		
-1		
0		
1		
2		

• If you're not *given x*-values to evaluate, choose your own!

GRAPHING BY PLOTTING POINTS

- 1) Isolate y to left side: y = ...
- 2) Calculate y-values from 3-5 chosen x-values
- 3) Plot (x, y) points from Step 2
- 4) Connect points with line/curve

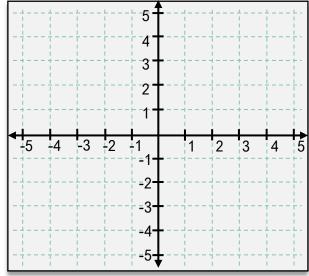


<u>PRACTICE</u>: Graph the equation $y - x^2 + 3 = 0$ by choosing points that satisfy the equation.

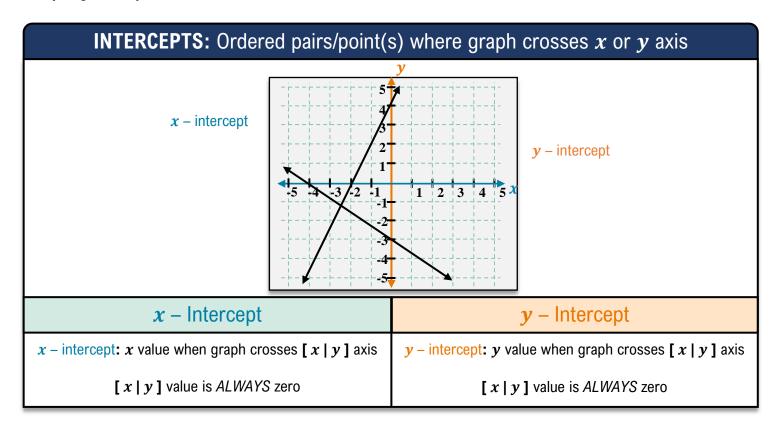
x	у	Ordered Pair (x, y)

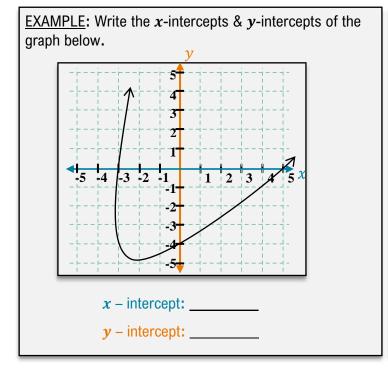
GRAPHING BY PLOTTING POINTS

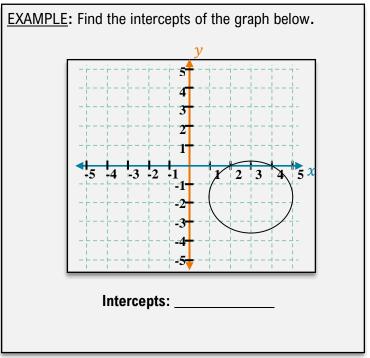
- 1) Isolate y to left side: y = ...
- 2) Calculate y-values from 3-5 chosen x-values
- 3) Plot (x, y) points from Step 2
- 4) Connect points with line/curve



<u>PRACTICE</u>: Graph the equation $y = \sqrt{x} + 1$ by choosing points that satisfy the equation. (*Hint: Choose positive numbers only*)


x	у	Ordered Pair


GRAPHING BY PLOTTING POINTS


- 1) Isolate y to left side: y = ...
- 2) Calculate y-values from 3-5 chosen x-values
- 3) Plot (x, y) points from Step 2
- 4) Connect points with line/curve

Graphing Intercepts

• If asked for "x- or y-intercept", simply write the x or y-value. If asked for just "intercepts", write the ordered pairs.