Simplifying Radicals by Expanding

- ullet When $\sqrt{\ }$'s aren't perfect powers, you can simplify by re-writing it as a _____ where 1 term **IS** a perfect power!
 - An expression is <u>fully simplified</u> when you can't break up $\sqrt{\ }$'s any further.

If a number in a radical has factors a & b,

EXAMPLE: Simplify the expression.

$$\stackrel{(A)}{\sqrt{20}}$$

$$(B) \sqrt{18x^2}$$

$$(c) \frac{\sqrt[3]{54x^4}}{\sqrt[3]{54x^4}}$$

T EIRI EOT T OTTERO		
Squares	Cubes	
$2^2 = 4$	$2^3 = 8$	
$3^2 = 9$	$3^3 = 27$	
$4^2 = 16$	$4^3 = 64$	
$5^2 = 25$	$5^3 = 125$	
$6^2 = 36$		
$7^2 = 49$		
$8^2 = 64$		
$9^2 = 81$		

 $10^2 = 100$

PERFECT POWERS

PRACTICE: Simplify the radical.

 $\sqrt{75}$

PRACTICE: Simplify the radical.

 $\sqrt{180}$

Simplifying Radicals with Variables

ullet We can apply everything we've seen for Square & n^{th} Roots with Variables in $\sqrt{\ }$'s!

Radicals WI	THOUT Variables	Radicals V	VITH Variables
$(3)^2 = \sqrt{9} =$	$(2)^3 = \sqrt[3]{8} = $	$()^2 = \sqrt{x^2} =$	$()^3 = \sqrt[3]{x^6} =$

Power Rule
$(a^m)^n = a^{m \cdot n}$

- Remember: When $\sqrt{\ }$'s aren't perfect powers, split them where 1 factor (# or variable) **/S** a perfect power.
 - For $\sqrt{\ }$'s with numbers AND variables, simplify them _____.

 $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$

EXAMPLE: Simplify the expression.

 $(A) \sqrt{\chi^3}$

(**B**)

 $\sqrt{x^7}$

(C)

 $\sqrt{8x^5}$

PERFECT POWERS		
Squares	Cubes	
$2^{2} = 4$ $3^{2} = 9$ $4^{2} = 16$ $5^{2} = 25$ $6^{2} = 36$ $7^{2} = 49$ $8^{2} = 64$ $9^{2} = 81$ $10^{2} = 100$	$2^3 = 8$ $3^3 = 27$ $4^3 = 64$ $5^3 = 125$	

PRACTICE: Simplify the radical.

$$\sqrt{63x^2}$$

Simplifying Radicals with Fractions

- Split up OR combine radical expressions with fractions using these rules:
 - Sometimes it's better to split & simplify, sometimes it's better to divide & simplify.

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt{\frac{49}{64}} = \frac{\sqrt{32}}{\sqrt{2}} =$$

EXAMPLE: Simplify the expression.		PERFECT	POWERS
(A)	(B)	Squares	Cubes
$\sqrt{\frac{64x^4}{9x^2}}$	$\frac{\sqrt{72x^3}}{\sqrt{9x}}$	$2^{2} = 4$ $3^{2} = 9$ $4^{2} = 16$ $5^{2} = 25$ $6^{2} = 36$ $7^{2} = 49$ $8^{2} = 64$ $9^{2} = 81$ $10^{2} = 100$	$2^3 = 8$ $3^3 = 27$ $4^3 = 64$ $5^3 = 125$

Adding & Subtracting LIKE Radicals

• Just how we combined *like terms*, combine ______ (same *radicand*, same *index*).

Algebraic Expressions	Radical Expressions
2x + 3 + 4x + 8	$(2\sqrt{x}+3)+(4\sqrt{x}+8)$
(2x+4x)+(3+8)	
6x + 11	

EXAMPLE: Perform the indicated operation and simplify. Assume all variables are positive.

(A)
$$3\sqrt{7} + 2\sqrt{7} - \sqrt[3]{7}$$

(**B**)
$$9\sqrt[3]{x} - \sqrt{x} - 5\sqrt[3]{x} + 3$$

PRACTICE: True or False: $\sqrt{9+16}$ and $\sqrt{9}+\sqrt{16}$ are equal.

Adding & Subtracting UNLIKE Radicals

• When adding/subtracting radicands that are NOT alike, you'll have to ______ them first before combining!

Combining LIKE Radicals	Combining UNLIKE Radicals
$3\sqrt{5} + 4\sqrt{5}$	$\sqrt{5} + \sqrt{20}$

 $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$

EXAMPLE: Add or subtract the expressions and simplify.

$$(B) \qquad \qquad \sqrt{18} + \sqrt{50}$$

PERFECT POWERS		
Squares	Cubes	
$2^2 = 4$	$2^3 = 8$	
$3^2 = 9$	$3^3 = 27$	
$4^2 = 16$	$4^3 = 64$	
$5^2 = 25$	$5^3 = 125$	
$6^2 = 36$		
$7^2 = 49$		
$8^2 = 64$		
$9^2 = 81$		
$10^2 = 100$		