Graphing Linear Inequalities

- ◆ You'll have to plot inequalities on a **2D graph** instead of a **1D number line**.
 - ▶ To graph an inequality, graph the line and ______ side of graph with points that make inequality _____.

EXAMPLE

Graph y > 2x - 4

HOW TO: Graph Linear Inequalities

- 1) Graph the solid/dashed line by switching inequality symbol with an __ sign
- 2) Test a point on either side of line by (x, y) into inequality (Best to use a point on x or y axis)
- 3) If point makes ineq. [TRUE | FALSE], shade side ______ that point If point makes ineq. [TRUE | FALSE], shade side _____ that point
- ◆ Shortcut: Isolate *y* to left side of inequality, then:
 - lacktriangledown If $y>\cdots$ or $y\geq\cdots$ shade [<code>ABOVE</code> | <code>BELOW</code>] line
 - \bullet If $y<\cdots$ or $y\leq\cdots$ shade [<code>ABOVE</code> | <code>BELOW</code>] line

EXAMPLE Match the inequality with its graph.

(A)

y > -3x + 4

(B)

(C)

x + y < 1

 $-3x - y \ge -4$

(1)

(3)

PRACTICE Graph the inequality 2x + 3y < 6.

HOW TO: Graph Linear Inequalities

- 1) Graph the solid/dashed line by switching inequality symbol with an = sign
- 2) Test a point on either side of line by plugging (x, y) into inequality (Best to use a point on x or y axis)
- 3) If point makes ineq. TRUE, shade side WITH that point If point makes ineq. FALSE, shade side WITHOUT that point

Graphing Nonlinear Inequalities

◆ Graphing *nonlinear* inequalities is *exactly* like graphing linear inequalities!

EXAMPLE

Graph $y \ge x^2 - 1$

HOW TO: Graph Nonlinear Inequalities

- 1) Graph the solid/dashed curve by switching inequality symbol with an = sign
- 2) Test a point on either side of curve by plugging (x, y) into inequality (Best to use a point on x or y axis)
- If point makes ineq. TRUE, shade side WITH that point If point makes ineq. FALSE, shade side WITHOUT that point

PRACTICE

Graph the inequality $y < 2^x$

PRACTICE Graph the inequality $x^2 + (y-1)^2 \le 9$

HOW TO: Graph Nonlinear Inequalities

- 1) Graph the solid/dashed curve by switching inequality symbol with an = sign
- 2) Test a point on either side of curve by plugging (x, y) into inequality (Best to use a point on x or y axis)
- 3) If point makes ineq. TRUE, shade side WITH that point If point makes ineq. FALSE, shade side WITHOUT that point

Graphing Systems of Inequalities

- ◆ To graph **Systems of Ineq's**, plot ALL lines/curves & shade region containing points that make _____ ineq's **TRUE**.
 - Use different colors, different styles of shading, or arrows to shade each curve first, then find the overlap.

EXAMPLE

Graph the system of inequalities.

$$y \leq -x + 4$$

$$y > 2x + 1$$

HOW TO: Graph Systems of Inequalities

For each inequality:

- 1) Graph the solid/dashed curve by switching inequality symbol with an = sign
- 2) Test a point on either side of curve by plugging (x, y) into inequality (Best to use a point on x or y axis)
- 3) If point makes ineq. TRUE, lightly shade side WITH that point If point makes ineq. FALSE, lightly shade side WITHOUT that point Finally,
- 4) Shade the overlap of all shaded regions

◆ One (or more) equations may be non-linear (parabolas, circles, etc.) instead of lines.

EXAMPLE

Graph the system of inequalities.

$$y \ge x^2 - 4$$

$$y \le -x + 3$$

Note: Some systems of inequalities may have NO solutions.

PRACTICE Graph the system of inequalities and indicate the region (if any) of solutions satisfying all equations.

$$3x - 2y > 6$$

$$3x - 2y < -4$$

HOW TO: Graph Systems of Inequalities

For each inequality:

Finally,

- 1) Graph the solid/dashed curve by switching inequality symbol with an = sign
- 2) Test a point on either side of curve by plugging (x, y) into inequality (Best to use a point on x or y axis)
- **3)** If point makes ineq. **TRUE**, *lightly* shade side **WITH** that point If point makes ineq. **FALSE**, *lightly* shade side **WITHOUT** that point
- 4) Shade the overlap of all shaded regions

PRACTICE Graph the system of inequalities and indicate the region (if any) of solutions satisfying all equations.

$$x + y \le 4$$

$$y \ge 1$$

