TOPIC: HYPERBOLAS NOT AT THE ORIGIN Graphing Hyperbolas NOT At The Origin

Circle Ellipse Parabola Hyperbola

• To graph hyperbolas NOT at the origin, shift points by (h, k)

Horizontal Hyperbola	

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

EXAMPLE: Graph the following hyperbola.

$$\frac{(y-1)^2}{9} - \frac{(x-2)^2}{16} = 1$$

- 1) Hyperbola is [HORIZONTAL | VERTICAL]
- **2)** Center (h, k): (____, ___)
- 3) Vertices horiz. $\rightarrow (h \pm a, k)$, OR vert. $\rightarrow (h, k \pm a)$: $(\underline{\hspace{1cm}},\underline{\hspace{1cm}}) \& (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$
- 4) b points horiz. \rightarrow $(h, k \pm b)$, OR vert. \rightarrow $(h \pm b, k)$: $(__, __) \& (__, __)$
- 5) Asymptotes:

TO GRAPH

- (A) draw a box through vertices & b points
- (B) draw lines through box corners
- 6) Draw branches at vertices & approaching asym.

TOPIC: HYPERBOLAS NOT AT THE ORIGIN

Circle	Ellipse	Parabola	Hyperbola

PRACTICE: Describe the hyperbola $\frac{(x+2)^2}{9} - \frac{(y-4)^2}{16} = 1$.

- (A) This is a vertical hyperbola centered at (-2,4) with vertices at (4,2), (4,-6) and foci at (4,4), (4,-8).
- (B) This is a *vertical* hyperbola centered at (2, -4) with vertices at (4,1), (4, -5) and foci at (4,3), (4, -7).
- (C) This is a horizontal hyperbola centered at (-2,4) with vertices at (2,4), (-6,4) and foci at (4,4), (-8,4).
- (**D**) This is a *horizontal* hyperbola centered at (-2,4) with vertices at (1,4), (-5,4) and foci at (3,4), (-7,4).

<u>PRACTICE</u>: Describe the hyperbola $y^2 - \frac{(x-1)^2}{4} = 1$.

- (A) This is a *vertical* hyperbola centered at (1,0) with vertices at (1,1), (1,-1) and foci at $(1,\sqrt{5})$, $(1,-\sqrt{5})$.
- (B) This is a vertical hyperbola centered at (1,0) with vertices at (1,2), (1,-2) and foci at (1,1), (1,-1).
- (C) This is a *horizontal* hyperbola centered at (-1,0) with vertices at (0,0), (-2,0) and foci at $(\sqrt{5}-1,0)$, $(-\sqrt{5}-1,0)$.
- (**D**) This is a *horizontal* hyperbola centered at (1,0) with vertices at (0,0), (-2,0) and foci at $(1,\sqrt{5})$, $(1,-\sqrt{5})$.