• A linear expression with an ____ sign is a linear equation!

Linear Expression

$$2x + 3$$

When x is 4, 2(4) + 3

• Simplify/evaluate for **KNOWN** x

Linear Equation

$$2x + 3$$

- Solve for **UNKNOWN** x
 - Find value(s) of x that make the statement _____
- You will need to use different operations $(+, -, \times, \div)$ to ______ x.
 - These operations should **ALWAYS** be done to ______ of the equation.

EXAMPLE: Identify and perform the operation needed to isolate x by applying it to both sides.

$$(A) x+2=0$$

$$(B) 3x = 12$$

Operations

H

X

• You'll often have to do *multiple* operations to solve a linear equation.

EXAMPLE: Solve the equation.

$$2(x-3)=0$$

Simplifying Algebraic Expressions

SOLVING LINEAR EQUATIONS

- 1) Distribute constants
- 2) Combine like terms
- 3) Group terms w/ __ & _____ on opposite sides
- 4) Isolate x (Solve for x)
- **5)** _____ solution by replacing x in original equation

• ____ is the _____ or ____ of the equation

PRACTICE: Solve the equation.

$$3(2 - 5x) = 4x + 25$$

SOLVING LINEAR EQUATIONS

- 1) Distribute constants
- 2) Combine like terms
- 3) Group terms w/ x & constants on opposite sides
- 4) Isolate x
- 5) Check solution by replacing x in original equation

Linear Equations with Fractions

ullet Linear equations may have **fractions** that need to be _____ using **L**east **C**ommon **D**enominator first.

EXAMPLE: Solve the equation.

$$\frac{1}{4}(x+2) - \frac{1}{3}x = \frac{1}{12}$$

SOLVING LINEAR EQUATIONS

- 0) Multiply by _____ to eliminate fractions
- 1) Distribute constants
- 2) Combine like terms
- 3) Group terms w/ x & constants on opposite sides
- 4) Isolate x
- **5)** (Optional) Check by replacing ${m x}$ in original eqn

PRACTICE: Solve the equation.

$$\frac{9}{2} + \frac{1}{4}(x+2) = \frac{3}{4}x$$

Categorizing Linear Equations

- Linear equations can be put in 3 possible categories based on _____ solutions they have.
 - These solutions may be written as a ______.

EXAMPLE: Solve, then categorize the linear equations.

2x + 4 = 10	x + 5 = x + 2 + 3	x = x + 4
	statement	•statement
• solution	• solutions	• solutions
Solution set is	Solution set is (all real numbers)	• Solution set is,
		set

<u>PRACTICE</u>: Solve the equation. Then state whether it is an identity, conditional, or inconsistent equation.

$$5x + 17 = 8x + 12 - 3(x + 4)$$

SOLVING LINEAR EQUATIONS

- 0) Multiply by LCD to eliminate fractions
- 1) Distribute constants
- 2) Combine like terms
- 3) Group terms w/ x & constants on opposite sides
- 4) Isolate x (if any x terms remain)

PRACTICE: Solve the equation. Then state whether it is an identity, conditional, or inconsistent equation.

$$\frac{x}{4} + \frac{1}{6} = \frac{x}{3}$$

SOLVING LINEAR EQUATIONS

- 0) Multiply by LCD to eliminate fractions
- 1) Distribute constants
- 2) Combine like terms
- 3) Group terms w/ x & constants on opposite sides
- 4) Isolate x (if any x terms remain)

PRACTICE: Solve the equation. Then state whether it is an identity, conditional, or inconsistent equation.

$$-2(5-3x) + x = 7x - 10$$