TOPIC: INTRO TO POLYNOMIALS

• Polynomial: Algebraic expression where variables have only _____ number exponents (no negatives, no fractions)

■ Monomial: _____ term(s)

■ Binomial: _____ term(s)

 $6x^3 + 3x^2 + 5x$

■ Trinomial: _____ term(s)

EXAMPLE: Determine if the expression is a polynomial. If so, identify if it's a monomial, binomial, trinomial, or none.

(A)

$$\frac{3}{4}x + x^3$$

Whole number exp? □ Number of terms?

MONOMIAL BINOMIAL **TRINOMIAL** NONE

$$\frac{5}{y}$$

Whole number exp? □ Number of terms?

MONOMIAL **BINOMIAL TRINOMIAL** NONE

 $2x^3v^2$

Whole number exp? □ Number of terms?

MONOMIAL BINOMIAL **TRINOMIAL** NONE

Writing Polynomials in Standard Form

• Standard Form: Terms written in _____ order of exponents & all _____ terms combined

Degree: ______ exponent of variable in polynomial

EXAMPLE: Write each polynomial in standard form. Identify the degree & leading coefficient.

$$(A) \frac{1}{2}x + x^3$$

$$5x - 3x^2 + 2x - 7 + x^2$$

Descending order?

Descending order?

Like terms combined? Like terms combined?

Degree:

Degree:

Leading Coefficient:

Leading Coefficient:

TOPIC: INTRO TO POLYNOMIALS

Adding & Subtracting Polynomials

• Like algebraic expressions, add/subtract polynomials by _____ like terms.

Algebraic Expressions (2x + 3) + (4x + 8)

EXAMPLE: Perform the given operation and simplify.

$$(5x^2 + 2x + 3) + (x^2 + 7x + 8)$$

Subtracting Polynomials

Adding Polynomials
$$(5x^2 + 2x + 3) + (x^2 + 7x + 8)$$
Subtracting Polynomials
$$(3x^2 + 2x + 4) - (5x + 10 - x^2)$$

Caution! Remember to distribute signs into parentheses!

PRACTICE: Perform the indicated operation.

$$(x^3 + 3x^2 - 7x) + 2(x^3 - 5x^2 + 9x + 4)$$

PRACTICE: Perform the indicated operation.

$$(-2x^4 + 10x^3 + 6x - 3) - (x^4 - 7x^2 + 8x + 5)$$