CONCEPT: TIME VALUE OF MONEY EQUATIONS

PRE-TEST: It's my money and I want it _____! a) Now b) Some other time
A dollar *today* is worth more than a dollar *tomorrow*. The two main concepts in Time Value of Money (TVM) are:

______: Taking current money and earning ______ as time passes into the future

______: Taking a future sum of money and removing ______ to find its value today
Timelines are a helpful tool to visualize the timing of cash flows at different points in time:
EXAMPLE: Today, you invest \$100 at Clutch Bank at a 10% interest rate for three years.

The Time Value of Money Equation:

$$FV = PV * (1 + r)^n$$
• FV = ____ = The value of a current amount of money at a future date
• PV = ____ = The current value of a sum of money (i.e. the PV of \$1,000 today is \$1,000)
• r = ____ = The ____ interest rate expressed as a decimal
• n = ____ = The amount of time passing between the PV and FV

PRACTICE: The formula $FV = PV * (1 + r)^n$ is best used for:

- a) Compounding
- b) Discounting
- c) Rebounding
- d) Converting

PRACTICE: You invest \$4,545 in Clutch Bank today earning a juicy 10% annual interest. What is the value of your investment in one year? What is the value of the investment after two years?

Using a little bit of algebra, we can rearrange the time value of money formula:		
	$FV = PV * (1+r)^n$	
DDAOTIOE TIL (FV	

PRACTICE: The formula $PV = \frac{FV}{(1+r)^n}$ is best used for:

- a) Compounding
- b) Discounting
- c) Rebounding
- d) Converting

PRACTICE: You are saving up \$12,000 for a luxurious European vacation two years from now. How much money would you need to invest today at Clutch Bank, earning their juicy 10% annual interest, to have enough for your vacation?

How much would you need to invest today, if instead you could only earn 6% interest?

• The formu	las we have used so far are for finding the value of a of money.
	: Payments of the same amount of money at regular intervals (i.e. annually)
□ T	he formulas for calculating PV and FV of an annuity are beyond the scope of this course.
	- We use PV and FV tables to find the values of lump-sums and annuities.
EXAMPLE:	You have reached retirement and have earned a pension that will pay you \$10,000 annually for the next five
years. Visua	lize this information on a timeline.
	Today, you purchased a \$1,000 bond that matures in 5 years. The bond pays annual interest of 10%. Visualize
these cash f	lows on a timeline.