CONCEPT: QUANTUM NUMBERS: SPIN QUANTUM NUMBER

- An orbital can hold a maximum of _____ electrons that have opposite spins according to the *Pauli Exclusion Principle*.
 - □ Pauli Exclusion Principle: No two electrons in the same orbital can have the same four quantum numbers.

- The Spin Quantum Number (m_s) : Deals with the rotational spin of an electron inside an atomic orbital.
 - □ Start out filling an orbital with an electron that points _____ followed by the next one pointing _____.
 - An electron that *points up* has an m_s value of _____.
 - An electron that *points down* has an m_s value of _____.

EXAMPLE: Provide the n, I m_l, and m_s quantum numbers for the two highlighted electrons in a 3rd principal level.

PRACTICE: Select the correct quantum numbers for the highlighted electron in a set of 5d orbitals.

a)
$$n = 5$$
, $l = 3$, $m_l = -4$, $m_s = +1/2$

b)
$$n = 4$$
, $l = 4$, $m_l = +1$, $m_s = +1/2$

c)
$$n = 5$$
, $l = 2$, $m_l = +1$, $m_s = +1/2$

d)
$$n = 5$$
, $l = 5$, $m_l = -2$, $m_s = +1/2$

e)
$$n = 5$$
, $l = 2$, $m_l = +5$, $m_s = +1/2$

CONCEPT: QUANTUM NUMBERS: SPIN QUANTUM NUMBER

PRACTICE: Which of the following set of quantum numbers is possible?

a)
$$n = 8$$
, $l = 3$, $m_l = 0$, $m_s = 0$

b)
$$n = 7$$
, $I = 2$, $m_I = 1$, $m_S = -1/2$

c)
$$n = 9$$
, $l = 1$, $m_l = -2$, $m_s = +1/2$

d)
$$n = 3$$
, $l = 0$, $m_l = +3$, $m_s = +1/2$

e)
$$n = 4$$
, $l = 2$, $m_l = -2$, $m_s = +1$

PRACTICE: Which of the following set of quantum numbers is possible for an electron in a set of 6f orbitals?

a)
$$n = 6$$
, $l = 3$, $m_l = 0$, $m_s = 0$

b)
$$n = 6$$
, $I = 2$, $m_l = 1$, $m_s = -1/2$

c)
$$n = 9$$
, $l = 1$, $m_l = -2$, $m_s = +1/2$

d)
$$n = 6$$
, $l = 3$, $m_l = 0$, $m_s = +1/2$

e)
$$n = 4$$
, $l = 2$, $m_l = -2$, $m_s = +1$

PRACTICE: Which of the following statements is false?

- a) If an electron has n=2, it possesses only s and p orbitals.
- b) Each orbital within a given atom can hold up to 2 electrons.
- c) The second shell of an atom possesses \emph{d} orbitals.
- d) A set of *f* orbitals can hold a maximum of 14 electrons.
- e) The first energy level contains only s orbitals.