CONCEPT: QUANTUM NUMBERS: SPIN QUANTUM NUMBER - An orbital can hold a maximum of _____ electrons that have opposite spins according to the *Pauli Exclusion Principle*. - □ Pauli Exclusion Principle: No two electrons in the same orbital can have the same four quantum numbers. - The Spin Quantum Number (m_s) : Deals with the rotational spin of an electron inside an atomic orbital. - □ Start out filling an orbital with an electron that points _____ followed by the next one pointing _____. - An electron that *points up* has an m_s value of _____. - An electron that *points down* has an m_s value of _____. **EXAMPLE:** Provide the n, I m_l, and m_s quantum numbers for the two highlighted electrons in a 3rd principal level. **PRACTICE:** Select the correct quantum numbers for the highlighted electron in a set of 5d orbitals. a) $$n = 5$$, $l = 3$, $m_l = -4$, $m_s = +1/2$ b) $$n = 4$$, $l = 4$, $m_l = +1$, $m_s = +1/2$ c) $$n = 5$$, $l = 2$, $m_l = +1$, $m_s = +1/2$ d) $$n = 5$$, $l = 5$, $m_l = -2$, $m_s = +1/2$ e) $$n = 5$$, $l = 2$, $m_l = +5$, $m_s = +1/2$ ## **CONCEPT:** QUANTUM NUMBERS: SPIN QUANTUM NUMBER **PRACTICE:** Which of the following set of quantum numbers is possible? a) $$n = 8$$, $l = 3$, $m_l = 0$, $m_s = 0$ b) $$n = 7$$, $I = 2$, $m_I = 1$, $m_S = -1/2$ c) $$n = 9$$, $l = 1$, $m_l = -2$, $m_s = +1/2$ d) $$n = 3$$, $l = 0$, $m_l = +3$, $m_s = +1/2$ e) $$n = 4$$, $l = 2$, $m_l = -2$, $m_s = +1$ PRACTICE: Which of the following set of quantum numbers is possible for an electron in a set of 6f orbitals? a) $$n = 6$$, $l = 3$, $m_l = 0$, $m_s = 0$ b) $$n = 6$$, $I = 2$, $m_l = 1$, $m_s = -1/2$ c) $$n = 9$$, $l = 1$, $m_l = -2$, $m_s = +1/2$ d) $$n = 6$$, $l = 3$, $m_l = 0$, $m_s = +1/2$ e) $$n = 4$$, $l = 2$, $m_l = -2$, $m_s = +1$ PRACTICE: Which of the following statements is false? - a) If an electron has n=2, it possesses only s and p orbitals. - b) Each orbital within a given atom can hold up to 2 electrons. - c) The second shell of an atom possesses \emph{d} orbitals. - d) A set of *f* orbitals can hold a maximum of 14 electrons. - e) The first energy level contains only s orbitals.