CONCEPT: ENTROPY CALCULATIONS

Entropy of the Universe

• The _____ Entropy change in the universe, and is represented by the formula:

Total Entropy Formula	
$\Delta S_{Total} = \Delta S_{\underline{}} + \Delta S_{\underline{}}$	$\Delta S_{tot} = $, Rxn:
• units of ΔS in	$\Delta S_{\text{tot}} = $, Rxn:

EXAMPLE: Calculate the total entropy change for a reaction with $\Delta S_{surr} = 2.7$ J/K and $\Delta S_{rxn}^{\circ} = -450.0$ kJ/K. Is this reaction spontaneous?

Entropy of the Surroundings

- \bullet We can also calculate the ΔS_{surr} if we know the _____ at which the reaction is taking place
 - □ Conditions: constant _____ and ____

EXAMPLE: Determine change in entropy of the universe for the following reaction at 32°C.

2 A (g) + 5 B (s)
$$\rightarrow$$
 AB (g) + 2 C (g) $\Delta H_{rxn} = -140 \text{ kJ}$, $\Delta S_{rxn} = 3.6 \text{ J/K}$

CONCEPT: ENTROPY CALCULATIONS

Entropy of the System

- Each substance has a standard _____ (S°) associated with it.
 - ☐ These values will always be provided.
 - □ Unlike standard molar _____ for substances in natural state, So does not equal to _____.

- Standard conditions: _____ and ____ pressure

EXAMPLE: Calculate ΔS°_{rxn} for the following reaction at 25°C.

2 NO (g) + O₂ (g)
$$\longrightarrow$$
 2 NO₂ (g) $\Delta H_{rxn} = -114.14 \text{ kJ}$

Substance	S° (J/mol•K)
NO (g)	210.8
$O_2(g)$	205.2
NO_2 (g)	240.1

PRACTICE: For the following reaction at 27°C, calculate ΔS^{o}_{rxn} , ΔS_{surr} , and ΔS_{tot} . Determine if reaction is favorable.

Fe₂O₃ (s) + 3 H₂ (g)
$$\longrightarrow$$
 2 Fe (s) + 3 H₂O (g) Δ H_{rxn} = 98.8 kJ

S° (J/mol•K)
87.4
130.7
27.3
188.8