CONCEPT: ENTROPY CALCULATIONS ## **Entropy of the Universe** • The _____ Entropy change in the universe, and is represented by the formula: | Total Entropy Formula | | |--|-----------------------------------| | $\Delta S_{Total} = \Delta S_{\underline{}} + \Delta S_{\underline{}}$ | $\Delta S_{tot} = $, Rxn: | | • units of ΔS in | $\Delta S_{\text{tot}} = $, Rxn: | **EXAMPLE:** Calculate the total entropy change for a reaction with $\Delta S_{surr} = 2.7$ J/K and $\Delta S_{rxn}^{\circ} = -450.0$ kJ/K. Is this reaction spontaneous? # **Entropy of the Surroundings** - \bullet We can also calculate the ΔS_{surr} if we know the _____ at which the reaction is taking place - □ Conditions: constant _____ and ____ **EXAMPLE:** Determine change in entropy of the universe for the following reaction at 32°C. 2 A (g) + 5 B (s) $$\rightarrow$$ AB (g) + 2 C (g) $\Delta H_{rxn} = -140 \text{ kJ}$, $\Delta S_{rxn} = 3.6 \text{ J/K}$ #### **CONCEPT: ENTROPY CALCULATIONS** ## **Entropy of the System** - Each substance has a standard _____ (S°) associated with it. - ☐ These values will always be provided. - □ Unlike standard molar _____ for substances in natural state, So does not equal to _____. - Standard conditions: _____ and ____ pressure **EXAMPLE:** Calculate ΔS°_{rxn} for the following reaction at 25°C. 2 NO (g) + O₂ (g) $$\longrightarrow$$ 2 NO₂ (g) $\Delta H_{rxn} = -114.14 \text{ kJ}$ | Substance | S° (J/mol•K) | |------------|--------------| | NO (g) | 210.8 | | $O_2(g)$ | 205.2 | | NO_2 (g) | 240.1 | **PRACTICE:** For the following reaction at 27°C, calculate ΔS^{o}_{rxn} , ΔS_{surr} , and ΔS_{tot} . Determine if reaction is favorable. Fe₂O₃ (s) + 3 H₂ (g) $$\longrightarrow$$ 2 Fe (s) + 3 H₂O (g) Δ H_{rxn} = 98.8 kJ | S° (J/mol•K) | |--------------| | 87.4 | | 130.7 | | 27.3 | | 188.8 | | |