CONCEPT: EQUATORIAL AND AXIAL POSITIONS Covalent compounds with ____ or ___ electron groups have equatorial and axial positions for surrounding elements. Equatorial Position: a surrounding element's position around the ____ of a compound. Axial (Apical) Position: a surrounding element's position ____ or ___ the equatorial positions. These arrangements cause ___ repulsion between elements and ___ energy for the compounds. The ___ electronegative element tends to prefer the axial position over the equatorial position. **EXAMPLE:** Based on your knowledge of axial and equatorial positions, draw the most likely structure of PF₂Cl₃. ## **Lone Pair Positions** - Lone pairs will orient themselves in order to _____ the interactions between surrounding elements. - □ Within 6 electron group systems, lone pairs are most stable in the ______ position. - □ Within **5** electron group systems, lone pairs are most stable in the ______ position. MEMORY TOOL It's a _____ as long as you remember the hands of the _____. **EXAMPLE:** Determine the molecular geometry for the following ion: SCI₃⁻ | PRACTICE: Draw the m | nost likely shape for the f | ollowing compound: XeF | 1 | | |----------------------|-----------------------------|--------------------------------------|----------------------|------| | PRACTICE: Draw and d | letermine the geometry f | or the following molecule | : Br ₂ CO | | | | lone pairs reside in the e | equatorial position of the l
c) 1 | KrCl₅⁺ ion.
d) 3 | e) 4 | **CONCEPT:** EQUATORIAL AND AXIAL POSITIONS