CONCEPT: MOLECULAR FORMULA

• Recall, the molecular formula gives the _____ number of different elements in a given compound.

Compound	Empirical Formula	n-factor	Molecular Formula
Glucose	CH ₂ O		
Octane	C ₄ H ₉		
Salicylic Acid	C ₇ H ₆ O ₃		

Calculating the Molecular Formula

• Once the empirical formula is determined, the molecular formula can be obtained if the _____ is also known.

EXAMPLE: Ibuprofen (M = 206.3 g/mol) works by reducing the production of prostaglandins, the chemical components responsible for pain. If its percent composition is 75.70% carbon, 8.80% hydrogen and 15.50% oxygen, determine its molecular formula.

STEP 1: Repeat the steps necessary to determine the empirical formula of the compound.

STEP 2: Calculate the _____ mass of the compound.

STEP 3: Divide the **molar mass** of the molecular formula by the **empirical mass** to determine the **n-factor**.

STEP 4: Multiply the ______ of the empirical formula by the n-factor to get the molecular formula.

CONCEPT: MOLEC	<u>ULAR FORMULA</u>		
PRACTICE: Use the	given empirical formula and molar mas	ss to determine the molecu	lar formula.
	Empirical Formula: NH ₂	Molar Mass: 32	.052 g/mol
a) NH ₄	b) N ₄ H	c) NH ₂	d) N ₂ H ₄
PRACTICE: Glycera	eldehyde (M = 90.078 g/mol), a simple	monosaccharide, is compri	ised of 39.999% C, 6.714% H, and
53.297% oxygen by	atomic weight. What would be its molec	cular formula?	
a) C ₃ H ₆ O ₃	b) CH ₂ O	c) C ₃ HO ₃	d) C ₂ H ₈ O ₂

PRACTICE: Elemental analysis of a pure compound indicated that the compound had 72.2% C, 8.50% H and the remainder as O. If 0.250 moles of the compound weighs 41.55 g, what is the molecular formula of the compound?