CONCEPT: BOHR EQUATION

• The **Bohr Equation** is used to calculate the energy <u>transition</u> of an electron as it moves from one shell to another.

Bohr Equations	
This formula is used when dealing with two orbital levels and energy.	This formula is used when dealing with two orbital levels and wavelength.
Bohr Equation Formula (Energy)	Bohr Equation Formula (Wavelength)
DE = - () (<u>1</u> = -()()
\Box \triangle E = energy change for electron transition in J.	□
□ = Rydberg Constant = J.	□ = Rydberg Constant = m ⁻¹ .
□ = Final orbital level.	
= Initial orbital level.	

EXAMPLE: What is the energy of a photon (in Joules) released during a transition from n = 4 to n = 1 state in the hydrogen atom?

PRACTICE: What is the wavelength of a photon (in nm) absorbed during a transition from the n = 2 to n = 5 state in the hydrogen atom?

CONCEPT: BOHR EQUATION PRACTICE: Determine the end (final) value of n in a hydrogen atom transition, if the electron starts in n = 5 and the atom releases a photon of light with an energy of $4.5738 \times 10^{-19} \text{ J}$.	
PRACTICE: An electron releases energy as it moves from the 6 th shell to the 3 rd shell. If it releases 4.25 x 10 ⁹ kJ of energy at a wavelength of 915.7 nm, how many photons were released in the process?	