CONCEPT: QUANTUM NUMBERS: ANGULAR MOMENTUM QUANTUM NUMBER

• The Angular Momentum (Azimuthal) Quantum Number : ____ = ___ of the atom.

Relationship between n and I

- When given the principal quantum number n, $l = ____ up to _____.$
 - □ **Limitation**: The angular momentum quantum number *l* is always _____ the principal quantum number *n*.

EXAMPLE: What are all possible values for l when n = 4?

a) 3

- b) 0, 1
- c) 0, 1, 2
- d) 0, 1,2, 3
- e) 0, 1, 2, 3, 4

Relationship between I and subshell

- The shell of an atom can be further divided into subshells (sublevels), with each one assigned a variable letter.
 - □ The value for the angular momentum quantum number (/) can determine this subshell letter.

Angular Mo	ar Momentum Quantum Number			
/ value	0	1	2	3
Subshell				

EXAMPLE: What are the possible values for n and l for an electron found in the 3^{rd} principal level and d sublevel?

a)
$$n = 2, I = 2$$

b)
$$n = 3, I = 1$$

c)
$$n = 3, I = 3$$

d)
$$n = 3, I = 2$$

PRACTICE: Provide all the possible values of *I* for a 2 energy level.

a) 0

- b) 0, 1
- c) 0, 1, 2
- d) 0, 1, 2, 3
- e) 1

PRACTICE: How many sublevels are contained in the third shell (n = 3) for a given atom?

a) 1

b) 2

c) 3

d) 4

e) 5

CONCEPT: QUANTUM NUMBERS: ANGULAR MOMENTUM QUANTUM NUMBER

Relationship between subshell and orbital shape

• The Angular Momentum Quantum Number gives information on the ______ of the orbitals that electrons occupy.

	Orbital Shapes					
l	I value	Subshell	Set of Orbital Shapes			
	0					
	1					
	2					
	3		***X			

EXAMPLE: Based on the following atomic orbital shape, which of the following set of quantum numbers is correct.

a)
$$n = 3$$
, $l = 4$

b)
$$n = 1, I = 1$$

c)
$$n = 0, I = 2$$

d)
$$n = 2, I = 2$$

e)
$$n = 5, I = 2$$

PRACTICE: Which of the following orbitals possesses the most orbital shapes?

a) 2p

b) 7s

c) 4d

d) 5p

e) 5f