CONCEPT: INTRO TO HYDROCARBONS

Hydrocarbons				
Class	Bond Type	Example	Hybridization	Generic Formula*
Alkanes	c—c	/	sp ³	
Alkenes	c=c	>>		C_nH_{2n}
Alkynes	с≡с	_=_	sp	
Cycloalkanes	c—c	\bigcirc		
Aromatics	0=0			C_nH_n

* n = # of C atoms

EXAMPLE: Classify each of the following hydrocarbons as an alkane, alkene, or alkyne.

a) /

0)

c) ____

d)

Saturated and Unsaturated Hydrocarbons

- Saturated: All ______ bonds; each C has max possible H atoms.
- Unsaturated: At least on _____ or ____ bond; does not have max H atoms.

EXAMPLE: Classify the following hydrocarbons as saturated or unsaturated:

d) —

CONCEPT: INTRO TO HYDROCARBONS				
PRACTICE: Write the molecular formula for an a	Ilkane with 5 C atoms.			
PRACTICE: Write the molecular formula for an a	alkyne with 4 C atoms.			
PRACTICE : Which of the following molecular formulas might indicate an alkene?				
a) C ₇ H ₁₆	b) C ₆ H ₁₂			
c) C ₅ H ₈	d) C ₄ H ₁₀			

CONCEPT: INTRO TO HYDROCARBONS

Bond Rotation and Spatial Orientation

- The C–C bonds in alkanes can _____ freely.
- The C____C bond in alkenes cannot rotate.
 - □ This leads to two different spatial orientations and two _____ compounds.

d)

EXAMPLE: Determine if the two structures below are the same or different compounds.

- a) Same compound
- b) Different compounds

PRACTICE: Which of the following is not a valid bond rotation?

c)
$$H^{\text{NH}_2}$$
 H^{NH_2}