CONCEPT: INTRO TO HYDROCARBONS | Hydrocarbons | | | | | |--------------|-----------|-----------------|-----------------|------------------| | Class | Bond Type | Example | Hybridization | Generic Formula* | | Alkanes | c—c | / | sp ³ | | | Alkenes | c=c | >> | | C_nH_{2n} | | Alkynes | с≡с | _=_ | sp | | | Cycloalkanes | c—c | \bigcirc | | | | Aromatics | 0=0 | | | C_nH_n | * n = # of C atoms **EXAMPLE**: Classify each of the following hydrocarbons as an alkane, alkene, or alkyne. a) / 0) c) ____ d) ## **Saturated and Unsaturated Hydrocarbons** - Saturated: All ______ bonds; each C has max possible H atoms. - Unsaturated: At least on _____ or ____ bond; does not have max H atoms. **EXAMPLE**: Classify the following hydrocarbons as saturated or unsaturated: d) — | CONCEPT: INTRO TO HYDROCARBONS | | | | | |---|-----------------------------------|--|--|--| | PRACTICE: Write the molecular formula for an a | Ilkane with 5 C atoms. | | | | | PRACTICE: Write the molecular formula for an a | alkyne with 4 C atoms. | | | | | PRACTICE : Which of the following molecular formulas might indicate an alkene? | | | | | | a) C ₇ H ₁₆ | b) C ₆ H ₁₂ | | | | | c) C ₅ H ₈ | d) C ₄ H ₁₀ | | | | ## **CONCEPT: INTRO TO HYDROCARBONS** ## **Bond Rotation and Spatial Orientation** - The C–C bonds in alkanes can _____ freely. - The C____C bond in alkenes cannot rotate. - □ This leads to two different spatial orientations and two _____ compounds. d) **EXAMPLE**: Determine if the two structures below are the same or different compounds. - a) Same compound - b) Different compounds **PRACTICE**: Which of the following is not a valid bond rotation? c) $$H^{\text{NH}_2}$$ H^{NH_2}