CONCEPT: PHASE DIAGRAMS

States of Matter of Phase Diagrams

- A map of the physical state of a pure substance as a function of pressure (_____-axis) and temperature (_____-axis).
 - □ **Triple Point:** Unique set of conditions where _____ states of matter are stable and in equilibrium with one another.
 - □ **Critical Point:** Final set of pressure and temperature conditions where a _____ and ____ are distinguishable.

EXAMPLE: At a temperature of 60°C and 1.20 atm determine the physical state of the substance from the phase diagram shown above?

a) Liquid

b) Gas

c) Solid

d) Supercritical Fluid

PRACTICE: The critical point of this substance occurs at what temperature?

a) 0 °C

b) -78.5 °C

e) 100 °C

CONCEPT: PHASE DIAGRAMS

Phase Changes of a Phase Diagram

- Recall, a phase change is a _____ change that involves the transition between the 3 states of matter.
 - □ **Phase Change Curve:** Line segment within phase diagrams that separates ____ states of matter from each other.

- □ **Normal Pressure:** Name given to the standard pressure of _____ atm or ____ mmHg or torr.
 - Normal Melting Point: Phase transition between ______ to _____ at normal pressure.
 - **Normal Boiling Point:** Phase transition between to at normal pressure.

EXAMPLE: A substance has a triple point -45.0 °C and 500 mmHg. What is the most likely phase change to occur for a solid sample of this substance as it is heated from -60.0 °C to 10 °C at a pressure of 490 mmHg?

- a) Condensation
- b) Vaporization
- c) Deposition
- d) Melting
- e) Sublimation

CONCEPT: PHASE DIAGRAMS

PRACTICE: Arrow I corresponds to:

a) Equilibrium

b) Sublimation

c) Condensation

d) Vaporization

e) Deposition

PRACTICE: What is the normal freezing point of this unknown substance?

a) 0 °C

b) -200 °C

e) 100 °C

PRACTICE: At what temperature can we no longer tell the difference between the liquid and gas phases?

a) 100 °C

b) 200 °C

c) 400 °C

d) 800 °C

e) 820 °C