CONCEPT: OSMOLARITY • Osmolarity (ionic molarity) represents the number of ______ of ions per _____ of solution. ## **Method 1: Direct Calculation of Osmolarity** • In the first method, we use the _____ of ions and ____ of solution with its formula to calculate osmolarity. **EXAMPLE:** Calculate the molarity of chloride ions when dissolving 58.1 g AlCl₃ in enough water to make 500 mL of solution. ## **Method 2: Osmolarity from Molarity** • If the molarity of a compound is known then the osmolarity for each of its ions can be determined by: **EXAMPLE:** What is the concentration of hydroxide ions in a 0.350 M solution of gallium hydroxide, Ga(OH)₃? ## **Method 3: Number of lons from Molarity** • Problems involving # of ions and molarity can use a given amount and conversion factors to isolate an end amount. **EXAMPLE:** How many moles of Ca²⁺ ions are in 0.120 L of 0.450 M Ca₃(PO₄)₂ solution? | CONCEPT: OSMOLARITY | | | | |---|-----------------------------|-----------------------------|-----------------------------| | PRACTICE: Which of the following solutions will have the highest concentration of bromide ions? | | | | | a) 0.10 M NaBr | b) 0.10 M CaBr ₂ | c) 0.10 M AIBr ₃ | d) 0.05 M MnBr ₄ | PRACTICE: How many milligrams of nitride ions are required to prepare 820 mL of 0.330 M Ba ₃ N ₂ solution? | PRACTICE: How many bromide ions are present in 65.5 mL of 0.210 M GaBr ₃ solution? | | | | | | | | | | | | | |