CONCEPT: CRYSTAL FIELD THEORY: OCTAHEDRAL COMPLEXES - Crystal Field Splitting: The separation of degenerate d orbitals into non-degenerate sets. - ☐ The splitting pattern for a complex depends upon its ______. ## Octahedral Crystal Field Splitting - Recall: In octahedral complexes, ligand-orbital interactions on the axes are the strongest. - □ This _____ the energies of the orbitals that are oriented on the axes. - Crystal Field Splitting Energy (____): The _____ difference between the two sets (e and t2) of orbitals. - □ e = doublet (___ orbitals) - □ t = triplet (___ orbitals) **EXAMPLE**: For which of the following complexes, the energy of the t₂ set is lower than the e set? - a) $[Zn(OH)_4]^{2-}$ - b) $[Ag(NH_3)_2]^+$ - c) [CoCl₄]²⁻ - d) $[Co(H_2O)_6]^{3+}$ **PRACTICE**: The following diagram shows crystal field splitting pattern for a complex. Which one of the complexes given below should best match the given diagram? - a) [Ag(NH₃)₂]⁺ - b) $[Cu(ox)_2]^{2-}$ - c) [Cr(en)₃]³⁺ - d) [Fe(CO)₅]