CONCEPT: CRYSTAL FIELD THEORY: OCTAHEDRAL COMPLEXES

- Crystal Field Splitting: The separation of degenerate d orbitals into non-degenerate sets.
 - ☐ The splitting pattern for a complex depends upon its ______.

Octahedral Crystal Field Splitting

- Recall: In octahedral complexes, ligand-orbital interactions on the axes are the strongest.
 - □ This _____ the energies of the orbitals that are oriented on the axes.

- Crystal Field Splitting Energy (____): The _____ difference between the two sets (e and t2) of orbitals.
 - □ e = doublet (___ orbitals)
- □ t = triplet (___ orbitals)

EXAMPLE: For which of the following complexes, the energy of the t₂ set is lower than the e set?

- a) $[Zn(OH)_4]^{2-}$
- b) $[Ag(NH_3)_2]^+$
- c) [CoCl₄]²⁻
- d) $[Co(H_2O)_6]^{3+}$

PRACTICE: The following diagram shows crystal field splitting pattern for a complex. Which one of the complexes given below should best match the given diagram?

- a) [Ag(NH₃)₂]⁺
- b) $[Cu(ox)_2]^{2-}$
- c) [Cr(en)₃]³⁺
- d) [Fe(CO)₅]

