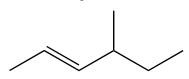

CONCEPT: NAMING ALKENES


- Recall: Alkenes possess a C—C _____ bond.
- Set of rules for naming alkenes is unique.
 - □ Modify ending from -ane to ______

cis-trans-location-substituent-location-parent-modifier

- Recall: Geometric isomers have a different spatial orientation around a _____ bond.
- _____ is not possible around a double bond (π).
 - □ We need to indicate which side of the double bond each group is on (cis or trans).
 - Only applies when there are $\underline{\hspace{1cm}}$ groups around a π bond.

EXAMPLE: Determine systematic name of the following alkene.

- STEP 1: Find the longest carbon chain (parent chain) and assign name according to the prefixes and modifier.
 - □ Parent chain should include a _____ bond and have _____ number of carbons.
 - If cyclic, add prefix _____ to the name of the alkene chain.
 - □ If a tie between longest chains, choose chain with more substituents.
- **STEP 2:** Assign name to all the substituents.
- **STEP 3:** Start numbering the chain from the end closest to the bond.
 - □ Assign location to ____ double bonded carbon.
 - If double bond in a ring, location is _____ necessary.
- **STEP 4-6:** Repeat from previous naming topic.
- **STEP 7:** Add _____ or ____ designation to the front of the name, if applicable.

CONCEPT: NAMING ALKENES

PRACTICE: Provide systematic name for given alkene.

PRACTICE: Provide systematic name for given alkene.

PRACTICE: Draw a structure for cis-5-methyl-2-hexene.

PRACTICE: Determine structure of the following alkene: 3-isopropylcyclohexene.