## **CONCEPT:** Kp AND Kc

- Recall, equilibrium constant (Keq) can be expressed as \_\_\_\_\_ or \_\_\_\_
  - □ Kp: used when dealing with gases (\_\_\_\_\_)
  - □ Kc: used when dealing with aqueous solutions in \_\_\_\_\_(M)
- Kp and Kc are related through the following formula:

**EXAMPLE:** Calculate Kp for the following reaction with Kc = 0.77 at 570 K:

## **CONCEPT:** Kp AND Kc

**PRACTICE:** Partial pressures of the following equilibrium mixture at 955 K are: 130 torr methane, 92 torr hydrogen sulfide, 167 torr hydrogen gas and 532 torr carbon disulfide. What is the value of K<sub>c</sub> at 955 K?

$$CH_4(g) + 2 H_2S(g) \longrightarrow 4 H_2(g) + CS_2(g)$$

**PRACTICE:** Consider the hypothetical reaction: ? X(g) + 3Y(g) = 3Z(g), where  $Kp = 1.16 \times 10^{-3}$  and Kc = 1.3 at 135°C. Find the value of the coefficient of X.

## CONCEPT: Kp AND Kc

## Value of $\Delta n$

$$K_p = K_c (RT)^{\Delta n}$$

- The value of \_\_\_\_ can help determine if Kc is greater, less than or equal to Kp.
  - $\Box$  If \_\_\_\_ moles of gas ( $\Delta$ n ≥ 1), then Kp > Kc

| Δn ≥ 1: Kc Kp | Δn < 0: Kc Kp | Δn = 0: Kc Kp |
|---------------|---------------|---------------|
|---------------|---------------|---------------|

**EXAMPLE:** For the following reactions, identify whether Kp is greater than, less than or equal to Kc.

a) 4 NH<sub>3</sub> (g) + 3 O<sub>2</sub> (g) 
$$\longrightarrow$$
 2 N<sub>2</sub> (g) + 6 H<sub>2</sub>O (g)

b) 2 HI (g) 
$$\longrightarrow$$
 H<sub>2</sub> (g) + I<sub>2</sub> (g)

**PRACTICE:** For which reaction(s) will Kp = Kc?

a) 
$$N_2(g) + O_2(g) = 2 NO(g)$$

c) 2 CH<sub>4</sub> (g) 
$$\longrightarrow$$
 C<sub>2</sub>H<sub>2</sub> (g) + 3 H<sub>2</sub> (g)

d) 
$$H_2O(g) + CO(g) \longrightarrow H_2(g) + CO_2(g)$$

**PRACTICE**: Select the correct choice below for the reaction: PCl<sub>5</sub> (g) — PCl<sub>3</sub> (g) + Cl<sub>2</sub> (g)

- a) Kp = Kc
- b) Kp > Kc
- c) Kp < Kc
- d) Keq = Kp
- e) None of the following