CONCEPT: ARRHENIUS EQUATION

• The **Arrhenius Equation** investigates the ______ dependence of chemical reaction rates.

Arrhenius Equation		
Arrhenius Equation Formula	□ k = Rate Constant	
$k = A \cdot e^{\frac{-E_a}{RT}}$	\triangle = Frequency or Factor \triangle = Activation Energy	
	\square R = Gas Constant as $\frac{J}{\text{mole } \cdot K}$	

□ This value for the R constant is used whenever _____, or ____, or ____ are mentioned.

EXAMPLE: The gas-phase reaction of NO with Cl_2 to form NOCI and CI has an activation energy of 7.2 kJ/mol and a frequency factor of 8.9 x 10^9 M⁻¹ s⁻¹. Calculate the rate constant at 110° C.

Arrhenius Equation (Two Point Form)

- The two point form of the Arrhenius Equation shows how changing the temperature can impact the ______ (k).
 □ _____ the reaction temperature causes an _____ in the rate constant k.
 - □ Used when dealing with _____ rate constants and _____ temperatures for a given reaction.

Arrhenius Equation (Two Point Form)
$$\Box = \text{Initial Rate Constant}$$

$$\Box = \text{Final Rate Constant}$$

$$\Box = \text{Initial Temperature}$$

$$\Box = \text{Final Temperature}$$

EXAMPLE: A chemical reaction has rate constants of $4.6 \times 10^{-2} \text{ s}^{-1}$ and $8.1 \times 10^{-2} \text{ s}^{-1}$ at 0°C and 20°C , respectively. What is the value of the activation energy?

CONCEPT: ARRHENIUS EQUATION

Linear Form of Arrhenius Equation

- We use the linear form of the equation when a plot of _____ vs ____ temperature is given.
 - □ Used to determine the _____ of the reaction.
 - Recall that the equation for a straight line is _____

EXAMPLE: A plot of lnk vs. 1/T has a slope of – 8313. What is the activation energy for this reaction?

PRACTICE: The rate constant of a reaction at 32°C is 0.060/s. If the frequency factor is 3.1 x 10¹⁵ s⁻¹, what is the activation barrier?

PRACTICE: A reaction with an activation energy $E_a = 55.00 \text{ kJ/mol}$ is run at temperature of 30°C. Determine the temperature required to increase the rate constant 3 times.

PRACTICE: The following data shows the rate constant of a reaction measured at numerous temperatures. Use the Arrhenius plot to determine the frequency factor for the reaction.

Temperature (K)	Rate Constant (1/s)
300.0	3.37 x 10 ⁻³
310.0	1.08 x 10 ⁻²
320.0	3.21 x 10 ⁻²
330.0	8.96 x 10 ⁻²
340.0	2.35 x 10 ⁻¹