
CONCEPT: PRECIPITATION: Ksp vs Q

- Recall: Ksp helps to determine how soluble an ionic solid can be in a solvent at equilibrium.
- Recall: Q (Reaction Quotient) is a ratio of product to reactant at a particular time.
 - □ Comparing **Ksp vs Q** will help determine if a ______ is likely to form.
- Solution Saturation: _____ of solute that has been dissolved in a solvent.
 - □ The degree of solution saturation can be determined by relative value of Ksp to Q.

EXAMPLE: Will BaSO₄ precipitate out when $8.2 \times 10^{-7} \text{ M}$ BaCO₃ is mixed with $5.7 \times 10^{-6} \text{ M}$ SrSO₄? Ksp of BaSO₄ is 1.1×10^{-10} .

PRACTICE: Two mixtures are added into one flask at 25°C, one mixture contains 0.55 mL of 0.75 M BaF₂ and another 0.25 mL of 1.3 M Mg(OH)₂. Ksp of Magnesium Fluoride, MgF₂, is 7.4 x 10-9. Identify the correct option.

- a) MgF2 solid will form
- b) MgF₂ solid forms, along with Mg⁺² and F⁻ ions
- c) solution is unsaturated, precipitate does not form
- d) solution is saturated, precipitate forms