CONCEPT: PH OF WEAK ACIDS - Recall, Weak Acids represent _____ electrolytes that only partially dissociate into aqueous ions. - □ They require the use of an ICE (I_____, C____, E_____) Chart to calculate equilibrium amounts. - ☐ The units of an ICE Chart will be in _____ and use ____. **EXAMPLE:** Calculate the hydronium ion concentration for 0.30 M HCN. The acid dissociation constant, K_a , for HCN is 4.9×10^{-10} . # **Calculating Equilibrium Amount** STEP 0: Use the following steps when asked to determine the [______] of any compound in your equation. STEP 1: Setup an ICE Chart for the weak acid that has it reacting with ______. - □ Use the Bronsted-Lowry definition to predict the products formed. - Make sure that _____ is used in the presence of the weak acid. - STEP 2: Using the INITIAL ROW, place the amount given for the weak acid. - □ Place a ____ for any substance not given an initial amount. STEP 3: We _____ reactants to _____ products. □ Using the CHANGE ROW, place a ____ for the reactants and a ____ for the products. STEP 4: Using the EQUILIBRIUM ROW, setup the equilibrium constant expression with ____ and solve for ____. □ Check if a shortcut can be utilized to avoid the _____ formula. # ## **CONCEPT: PH OF WEAK ACIDS** # Calculating pH - The pH or pOH of a weak acid can be calculated once the [equilibrium] of _____ is found. - □ Determined by using the **EQUILIBRIUM ROW** of an ICE Chart. **EXAMPLE:** What is the pH of a 0.074 M nitrous acid, HNO₂, solution? The K_a value for the compound is 4.6 x 10⁻⁴. Use STEPS 1 to 3 to setup the ICE Chart. | ICE Chart (Weak Acid) | | | | | | |-----------------------|-------|----------|------|--|--| | HNO ₂ (aq) | +()= | <u> </u> | (aq) | | | | L | | | | | | | C | | | | | | | E | | | | | | **STEP 4:** Using the **EQUILIBRIUM ROW**, setup the equilibrium constant expression and solve for _____. $\hfill\Box$ Check if a shortcut can be utilized to avoid the _____ formula. STEP 5: The _____ variable will equal [] and can be used to solve pH. Add H3O+ too purple box #### **CONCEPT: PH OF WEAK ACIDS** # **Calculating Percent Ionization/Dissociation** - The ______ of a weak acid that can become ionized when placed in an aqueous solution. - □ Weak Acids ionize < _____ # % Ionization = — x 100 **EXAMPLE:** Calculate the percent dissociation of 4.10 x 10⁻¹ M acetic acid, HC₂H₃O₂. The K_a value is 1.8 x 10⁻⁵. Use STEPS 1 to 3 to setup the ICE Chart. **STEP 4:** Using the **EQUILIBRIUM ROW**, setup the equilibrium constant expression and solve for _____. $\hfill\Box$ Check if a shortcut can be utilized to avoid the _____ formula. **STEP 5:** Use the _____ variable to calculate the percent ionization/dissociation. | DNCEPT: PH OF WEAK ACIDS | |---| | ACTICE: Calculate the [H+] of a 0.50 M solution of methylammonium bromide, CH ₃ NH ₃ Br. The K _b of methylamine, | | I ₃ NH ₂ , is given as 4.4 x 10 ⁻⁴ . | ACTICE: An unknown weak acid has an initial concentration of 0.55 M. What is the pH of the solution if the weak acid | | | | o has a pKa of 5.79?