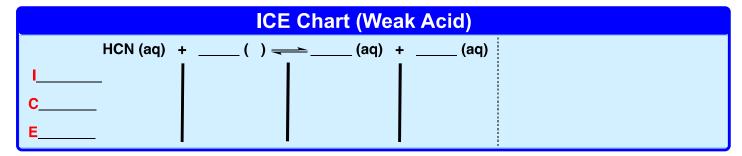
CONCEPT: PH OF WEAK ACIDS

- Recall, Weak Acids represent _____ electrolytes that only partially dissociate into aqueous ions.
 - □ They require the use of an ICE (I_____, C____, E_____) Chart to calculate equilibrium amounts.
 - ☐ The units of an ICE Chart will be in _____ and use ____.


EXAMPLE: Calculate the hydronium ion concentration for 0.30 M HCN. The acid dissociation constant, K_a , for HCN is 4.9×10^{-10} .

Calculating Equilibrium Amount

STEP 0: Use the following steps when asked to determine the [______] of any compound in your equation.

STEP 1: Setup an ICE Chart for the weak acid that has it reacting with ______.

- □ Use the Bronsted-Lowry definition to predict the products formed.
 - Make sure that _____ is used in the presence of the weak acid.

- STEP 2: Using the INITIAL ROW, place the amount given for the weak acid.
 - □ Place a ____ for any substance not given an initial amount.

STEP 3: We _____ reactants to _____ products.

□ Using the CHANGE ROW, place a ____ for the reactants and a ____ for the products.

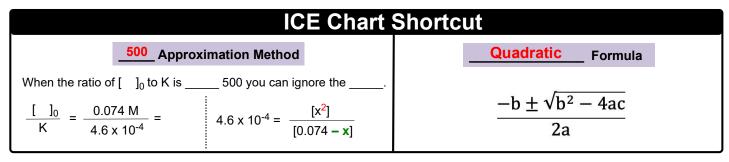
STEP 4: Using the EQUILIBRIUM ROW, setup the equilibrium constant expression with ____ and solve for ____.

□ Check if a shortcut can be utilized to avoid the _____ formula.

CONCEPT: PH OF WEAK ACIDS

Calculating pH

- The pH or pOH of a weak acid can be calculated once the [equilibrium] of _____ is found.
 - □ Determined by using the **EQUILIBRIUM ROW** of an ICE Chart.


EXAMPLE: What is the pH of a 0.074 M nitrous acid, HNO₂, solution? The K_a value for the compound is 4.6 x 10⁻⁴.

Use STEPS 1 to 3 to setup the ICE Chart.

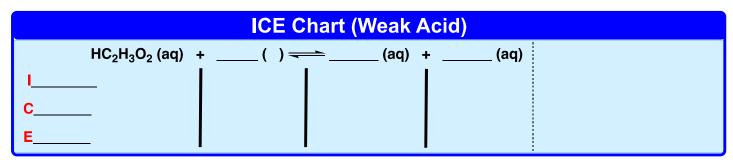
ICE Chart (Weak Acid)					
HNO ₂ (aq)	+()=	<u> </u>	(aq)		
L					
C					
E					

STEP 4: Using the **EQUILIBRIUM ROW**, setup the equilibrium constant expression and solve for _____.

 $\hfill\Box$ Check if a shortcut can be utilized to avoid the _____ formula.

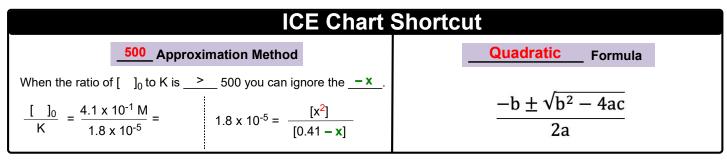
STEP 5: The _____ variable will equal [] and can be used to solve pH. Add H3O+ too purple box

CONCEPT: PH OF WEAK ACIDS


Calculating Percent Ionization/Dissociation

- The ______ of a weak acid that can become ionized when placed in an aqueous solution.
 - □ Weak Acids ionize < _____

% Ionization = — x 100


EXAMPLE: Calculate the percent dissociation of 4.10 x 10⁻¹ M acetic acid, HC₂H₃O₂. The K_a value is 1.8 x 10⁻⁵.

Use STEPS 1 to 3 to setup the ICE Chart.

STEP 4: Using the **EQUILIBRIUM ROW**, setup the equilibrium constant expression and solve for _____.

 $\hfill\Box$ Check if a shortcut can be utilized to avoid the _____ formula.

STEP 5: Use the _____ variable to calculate the percent ionization/dissociation.

DNCEPT: PH OF WEAK ACIDS
ACTICE: Calculate the [H+] of a 0.50 M solution of methylammonium bromide, CH ₃ NH ₃ Br. The K _b of methylamine,
I ₃ NH ₂ , is given as 4.4 x 10 ⁻⁴ .
ACTICE: An unknown weak acid has an initial concentration of 0.55 M. What is the pH of the solution if the weak acid
o has a pKa of 5.79?